syntax_tree.dart
28.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
import 'dart:math' as math;
import 'package:collection/collection.dart';
import 'package:flutter/foundation.dart';
import 'package:flutter/material.dart';
import 'package:flutter/widgets.dart';
import 'package:provider/provider.dart';
import 'package:tuple/tuple.dart';
import '../render/layout/line.dart';
import '../render/layout/line_editable.dart';
import '../utils/iterable_extensions.dart';
import '../utils/num_extension.dart';
import '../utils/wrapper.dart';
import '../widgets/controller.dart';
import '../widgets/mode.dart';
import '../widgets/selectable.dart';
import 'nodes/space.dart';
import 'nodes/sqrt.dart';
import 'options.dart';
import 'spacing.dart';
import 'types.dart';
/// Roslyn's Red-Green Tree
///
/// [Description of Roslyn's Red-Green Tree](https://docs.microsoft.com/en-us/archive/blogs/ericlippert/persistence-facades-and-roslyns-red-green-trees)
class SyntaxTree {
/// Root of the green tree
final EquationRowNode greenRoot;
SyntaxTree({
required this.greenRoot,
});
/// Root of the red tree
late final SyntaxNode root = SyntaxNode(
parent: null,
value: greenRoot,
pos: -1, // Important
);
/// Replace node at [pos] with [newNode]
SyntaxTree replaceNode(SyntaxNode pos, GreenNode newNode) {
if (identical(pos.value, newNode)) {
return this;
}
if (identical(pos, root)) {
return SyntaxTree(greenRoot: newNode.wrapWithEquationRow());
}
final posParent = pos.parent;
if (posParent == null) {
throw ArgumentError(
'The replaced node is not the root of this tree but has no parent');
}
return replaceNode(
posParent,
posParent.value.updateChildren(posParent.children
.map((child) => identical(child, pos) ? newNode : child?.value)
.toList(growable: false)));
}
List<SyntaxNode> findNodesAtPosition(int position) {
var curr = root;
final res = <SyntaxNode>[];
while (true) {
res.add(curr);
final next = curr.children.firstWhereOrNull((child) => child == null
? false
: child.range.start <= position && child.range.end >= position);
if (next == null) break;
curr = next;
}
return res;
}
EquationRowNode findNodeManagesPosition(int position) {
var curr = root;
var lastEqRow = root.value as EquationRowNode;
while (true) {
final next = curr.children.firstWhereOrNull(
(child) => child == null
? false
: child.range.start <= position && child.range.end >= position,
);
if (next == null) break;
if (next.value is EquationRowNode) {
lastEqRow = next.value as EquationRowNode;
}
curr = next;
}
// assert(curr.value is EquationRowNode);
return lastEqRow;
}
EquationRowNode findLowestCommonRowNode(int position1, int position2) {
final redNodes1 = findNodesAtPosition(position1);
final redNodes2 = findNodesAtPosition(position2);
for (var index = math.min(redNodes1.length, redNodes2.length) - 1;
index >= 0;
index--) {
final node1 = redNodes1[index].value;
final node2 = redNodes2[index].value;
if (node1 == node2 && node1 is EquationRowNode) {
return node1;
}
}
return greenRoot;
}
List<GreenNode> findSelectedNodes(int position1, int position2) {
final rowNode = findLowestCommonRowNode(position1, position2);
final localPos1 = position1 - rowNode.pos;
final localPos2 = position2 - rowNode.pos;
return rowNode.clipChildrenBetween(localPos1, localPos2).children;
}
// Build widget tree
Widget buildWidget(MathOptions options) => root.buildWidget(options).widget;
}
/// Red Node. Immutable facade for math nodes.
///
/// [Description of Roslyn's Red-Green Tree](https://docs.microsoft.com/en-us/archive/blogs/ericlippert/persistence-facades-and-roslyns-red-green-trees).
///
/// [SyntaxNode] is an immutable facade over [GreenNode]. It stores absolute
/// information and context parameters of an abstract syntax node which cannot
/// be stored inside [GreenNode]. Every node of the red tree is evaluated
/// top-down on demand.
class SyntaxNode {
final SyntaxNode? parent;
final GreenNode value;
final int pos;
SyntaxNode({
required this.parent,
required this.value,
required this.pos,
});
/// Lazily evaluated children of current [SyntaxNode]
late final List<SyntaxNode?> children = List.generate(
value.children.length,
(index) => value.children[index] != null
? SyntaxNode(
parent: this,
value: value.children[index]!,
pos: this.pos + value.childPositions[index],
)
: null,
growable: false);
/// [GreenNode.getRange]
late final TextRange range = value.getRange(pos);
/// [GreenNode.editingWidth]
int get width => value.editingWidth;
/// [GreenNode.capturedCursor]
int get capturedCursor => value.capturedCursor;
/// This is where the actual widget building process happens.
///
/// This method tries to reduce widget rebuilds. Rebuild bypass is determined
/// by the following process:
/// - If oldOptions == newOptions, bypass
/// - If [GreenNode.shouldRebuildWidget], force rebuild
/// - Call [buildWidget] on [children]. If the results are identical to the
/// results returned by [buildWidget] called last time, then bypass.
BuildResult buildWidget(MathOptions options) {
if (value is PositionDependentMixin) {
(value as PositionDependentMixin).updatePos(pos);
}
if (value._oldOptions != null && options == value._oldOptions) {
return value._oldBuildResult!;
}
final childOptions = value.computeChildOptions(options);
final newChildBuildResults = _buildChildWidgets(childOptions);
final bypassRebuild = value._oldOptions != null &&
!value.shouldRebuildWidget(value._oldOptions!, options) &&
listEquals(newChildBuildResults, value._oldChildBuildResults);
value._oldOptions = options;
value._oldChildBuildResults = newChildBuildResults;
return bypassRebuild
? value._oldBuildResult!
: (value._oldBuildResult =
value.buildWidget(options, newChildBuildResults));
}
List<BuildResult?> _buildChildWidgets(List<MathOptions> childOptions) {
assert(children.length == childOptions.length);
if (children.isEmpty) return const [];
return List.generate(children.length,
(index) => children[index]?.buildWidget(childOptions[index]),
growable: false);
}
}
/// Node of Roslyn's Green Tree. Base class of any math nodes.
///
/// [Description of Roslyn's Red-Green Tree](https://docs.microsoft.com/en-us/archive/blogs/ericlippert/persistence-facades-and-roslyns-red-green-trees).
///
/// [GreenNode] stores any context-free information of a node and is
/// constructed bottom-up. It needs to indicate or store:
/// - Necessary parameters for this math node.
/// - Layout algorithm for this math node, if renderable.
/// - Strutural information of the tree ([children])
/// - Context-free properties for other purposes. ([editingWidth], etc.)
///
/// Due to their context-free property, [GreenNode] can be canonicalized and
/// deduplicated.
abstract class GreenNode {
/// Children of this node.
///
/// [children] stores structural information of the Red-Green Tree.
/// Used for green tree updates. The order of children should strictly
/// adheres to the cursor-visiting order in editing mode, in order to get a
/// correct cursor range in the editing mode. E.g., for [SqrtNode], when
/// moving cursor from left to right, the cursor first enters index, then
/// base, so it should return [index, base].
///
/// Please ensure [children] works in the same order as [updateChildren],
/// [computeChildOptions], and [buildWidget].
List<GreenNode?> get children;
/// Return a copy of this node with new children.
///
/// Subclasses should override this method. This method provides a general
/// interface to perform structural updates for the green tree (node
/// replacement, insertion, etc).
///
/// Please ensure [children] works in the same order as [updateChildren],
/// [computeChildOptions], and [buildWidget].
GreenNode updateChildren(covariant List<GreenNode?> newChildren);
/// Calculate the options passed to children when given [options] from parent
///
/// Subclasses should override this method. This method provides a general
/// description of the context & style modification introduced by this node.
///
/// Please ensure [children] works in the same order as [updateChildren],
/// [computeChildOptions], and [buildWidget].
List<MathOptions> computeChildOptions(MathOptions options);
/// Compose Flutter widget with child widgets already built
///
/// Subclasses should override this method. This method provides a general
/// description of the layout of this math node. The child nodes are built in
/// prior. This method is only responsible for the placement of those child
/// widgets accroding to the layout & other interactions.
///
/// Please ensure [children] works in the same order as [updateChildren],
/// [computeChildOptions], and [buildWidget].
BuildResult buildWidget(
MathOptions options, List<BuildResult?> childBuildResults);
/// Whether the specific [MathOptions] parameters that this node directly
/// depends upon have changed.
///
/// Subclasses should override this method. This method is used to determine
/// whether certain widget rebuilds can be bypassed even when the
/// [MathOptions] have changed.
///
/// Rebuild bypass is determined by the following process:
/// - If [oldOptions] == [newOptions], bypass
/// - If [shouldRebuildWidget], force rebuild
/// - Call [buildWidget] on [children]. If the results are identical to the
/// the results returned by [buildWidget] called last time, then bypass.
bool shouldRebuildWidget(MathOptions oldOptions, MathOptions newOptions);
/// Minimum number of "right" keystrokes needed to move the cursor pass
/// through this node (from the rightmost of the previous node, to the
/// leftmost of the next node)
///
/// Used only for editing functionalities.
///
/// [editingWidth] stores intrinsic width in the editing mode.
///
/// Please calculate (and cache) the width based on [children]'s widths.
/// Note that it should strictly simulate the movement of the curosr.
int get editingWidth;
/// Number of cursor positions that can be captured within this node.
///
/// By definition, [capturedCursor] = [editingWidth] - 1.
/// By definition, [TextRange.end] - [TextRange.start] = capturedCursor - 1.
int get capturedCursor => editingWidth - 1;
/// [TextRange]
TextRange getRange(int pos) =>
TextRange(start: pos + 1, end: pos + capturedCursor);
/// Position of child nodes.
///
/// Used only for editing functionalities.
///
/// This method stores the layout strucuture for cursor in the editing mode.
/// You should return positions of children assume this current node is placed
/// at the starting position. It should be no shorter than [children]. It's
/// entirely optional to add extra hinting elements.
List<int> get childPositions;
/// [AtomType] observed from the left side.
AtomType get leftType;
/// [AtomType] observed from the right side.
AtomType get rightType;
MathOptions? _oldOptions;
BuildResult? _oldBuildResult;
List<BuildResult?>? _oldChildBuildResults;
Map<String, Object?> toJson() => {
'type': runtimeType.toString(),
};
}
/// [GreenNode] that can have children
abstract class ParentableNode<T extends GreenNode?> extends GreenNode {
@override
List<T> get children;
@override
late final int editingWidth = computeWidth();
/// Compute width from children. Abstract.
int computeWidth();
@override
late final List<int> childPositions = computeChildPositions();
/// Compute children positions. Abstract.
List<int> computeChildPositions();
@override
ParentableNode<T> updateChildren(covariant List<T?> newChildren);
}
mixin PositionDependentMixin<T extends GreenNode> on ParentableNode<T> {
var range = const TextRange(start: 0, end: -1);
int get pos => range.start - 1;
void updatePos(int pos) {
range = getRange(pos);
}
}
/// [SlotableNode] is those composite node that has editable [EquationRowNode]
/// as children and lay them out into certain slots.
///
/// [SlotableNode] is the most commonly-used node. They share cursor logic and
/// editing logic.
///
/// Depending on node type, some [SlotableNode] can have nulls inside their
/// children list. When null is allowed, it usually means that node will have
/// different layout slot logic depending on non-null children number.
abstract class SlotableNode<T extends EquationRowNode?>
extends ParentableNode<T> {
@override
late final List<T> children = computeChildren();
/// Compute children. Abstract.
///
/// Used to cache children list
List<T> computeChildren();
@override
int computeWidth() =>
children.map((child) => child?.capturedCursor ?? 0).sum + 1;
@override
List<int> computeChildPositions() {
var curPos = 0;
final result = <int>[];
for (final child in children) {
result.add(curPos);
curPos += child?.capturedCursor ?? 0;
}
return result;
}
}
/// [TransparentNode] refers to those node who have zero rendering content
/// iteself, and are expected to be unwrapped for its children during rendering.
///
/// [TransparentNode]s are only allowed to appear directly under
/// [EquationRowNode]s and other [TransparentNode]s. And those nodes have to
/// explicitly unwrap transparent nodes during building stage.
abstract class TransparentNode extends ParentableNode<GreenNode>
with _ClipChildrenMixin {
@override
int computeWidth() => children.map((child) => child.editingWidth).sum;
@override
List<int> computeChildPositions() {
var curPos = 0;
return List.generate(children.length + 1, (index) {
if (index == 0) return curPos;
return curPos += children[index - 1].editingWidth;
}, growable: false);
}
@override
BuildResult buildWidget(
MathOptions options, List<BuildResult?> childBuildResults) =>
BuildResult(
widget: const Text('This widget should not appear. '
'It means one of FlutterMath\'s AST nodes '
'forgot to handle the case for TransparentNodes'),
options: options,
results: childBuildResults
.expand((result) => result!.results ?? [result])
.toList(growable: false),
);
/// Children list when fully expand any underlying [TransparentNode]
late final List<GreenNode> flattenedChildList = children
.expand((child) =>
child is TransparentNode ? child.flattenedChildList : [child])
.toList(growable: false);
@override
late final AtomType leftType = children[0].leftType;
@override
late final AtomType rightType = children.last.rightType;
}
/// A row of unrelated [GreenNode]s.
///
/// [EquationRowNode] provides cursor-reachability and editability. It
/// represents a collection of nodes that you can freely edit and navigate.
class EquationRowNode extends ParentableNode<GreenNode>
with PositionDependentMixin, _ClipChildrenMixin {
/// If non-null, the leftmost and rightmost [AtomType] will be overriden.
final AtomType? overrideType;
@override
final List<GreenNode> children;
GlobalKey? _key;
GlobalKey? get key => _key;
@override
int computeWidth() => children.map((child) => child.editingWidth).sum + 2;
@override
List<int> computeChildPositions() {
var curPos = 1;
return List.generate(children.length + 1, (index) {
if (index == 0) return curPos;
return curPos += children[index - 1].editingWidth;
}, growable: false);
}
EquationRowNode({
required this.children,
this.overrideType,
});
factory EquationRowNode.empty() => EquationRowNode(children: []);
/// Children list when fully expanded any underlying [TransparentNode].
late final List<GreenNode> flattenedChildList = children
.expand((child) =>
child is TransparentNode ? child.flattenedChildList : [child])
.toList(growable: false);
/// Children positions when fully expanded underlying [TransparentNode], but
/// appended an extra position entry for the end.
late final List<int> caretPositions = computeCaretPositions();
List<int> computeCaretPositions() {
var curPos = 1;
return List.generate(flattenedChildList.length + 1, (index) {
if (index == 0) return curPos;
return curPos += flattenedChildList[index - 1].editingWidth;
}, growable: false);
}
@override
BuildResult buildWidget(
MathOptions options, List<BuildResult?> childBuildResults) {
final flattenedBuildResults = childBuildResults
.expand((result) => result!.results ?? [result])
.toList(growable: false);
final flattenedChildOptions =
flattenedBuildResults.map((e) => e.options).toList(growable: false);
// assert(flattenedChildList.length == actualChildWidgets.length);
// We need to calculate spacings between nodes
// There are several caveats to consider
// - bin can only be bin, if it satisfies some conditions. Otherwise it will
// be seen as an ord
// - There could aligners and spacers. We need to calculate the spacing
// after filtering them out, hence the [traverseNonSpaceNodes]
final childSpacingConfs = List.generate(
flattenedChildList.length,
(index) {
final e = flattenedChildList[index];
return _NodeSpacingConf(
e.leftType, e.rightType, flattenedChildOptions[index], 0.0);
},
growable: false,
);
_traverseNonSpaceNodes(childSpacingConfs, (prev, curr) {
if (prev?.rightType == AtomType.bin &&
const {
AtomType.rel,
AtomType.close,
AtomType.punct,
null,
}.contains(curr?.leftType)) {
prev!.rightType = AtomType.ord;
if (prev.leftType == AtomType.bin) {
prev.leftType = AtomType.ord;
}
} else if (curr?.leftType == AtomType.bin &&
const {
AtomType.bin,
AtomType.open,
AtomType.rel,
AtomType.op,
AtomType.punct,
null
}.contains(prev?.rightType)) {
curr!.leftType = AtomType.ord;
if (curr.rightType == AtomType.bin) {
curr.rightType = AtomType.ord;
}
}
});
_traverseNonSpaceNodes(childSpacingConfs, (prev, curr) {
if (prev != null && curr != null) {
prev.spacingAfter = getSpacingSize(
prev.rightType,
curr.leftType,
curr.options.style,
).toLpUnder(curr.options);
}
});
_key = GlobalKey();
final lineChildren = List.generate(
flattenedBuildResults.length,
(index) => LineElement(
child: flattenedBuildResults[index].widget,
canBreakBefore: false, // TODO
alignerOrSpacer: flattenedChildList[index] is SpaceNode &&
(flattenedChildList[index] as SpaceNode).alignerOrSpacer,
trailingMargin: childSpacingConfs[index].spacingAfter,
),
growable: false,
);
final widget = Consumer<FlutterMathMode>(builder: (context, mode, child) {
if (mode == FlutterMathMode.view) {
return Line(
key: _key!,
children: lineChildren,
);
}
// Each EquationRow will filter out unrelated selection changes (changes
// happen entirely outside the range of this EquationRow)
return ProxyProvider<MathController, TextSelection>(
create: (_) => const TextSelection.collapsed(offset: -1),
update: (context, controller, _) {
final selection = controller.selection;
return selection.copyWith(
baseOffset:
selection.baseOffset.clampInt(range.start - 1, range.end + 1),
extentOffset:
selection.extentOffset.clampInt(range.start - 1, range.end + 1),
);
},
// Selector translates global cursor position to local caret index
// Will only update Line when selection range actually changes
child: Selector2<TextSelection, Tuple2<LayerLink, LayerLink>,
Tuple3<TextSelection, LayerLink?, LayerLink?>>(
selector: (context, selection, handleLayerLinks) {
final start = selection.start - this.pos;
final end = selection.end - this.pos;
final caretStart = caretPositions.slotFor(start).ceil();
final caretEnd = caretPositions.slotFor(end).floor();
final caretSelection = caretStart <= caretEnd
? selection.baseOffset <= selection.extentOffset
? TextSelection(
baseOffset: caretStart, extentOffset: caretEnd)
: TextSelection(
baseOffset: caretEnd, extentOffset: caretStart)
: const TextSelection.collapsed(offset: -1);
final startHandleLayerLink =
caretPositions.contains(start) ? handleLayerLinks.item1 : null;
final endHandleLayerLink =
caretPositions.contains(end) ? handleLayerLinks.item2 : null;
return Tuple3(
caretSelection,
startHandleLayerLink,
endHandleLayerLink,
);
},
builder: (context, conf, _) {
final value = Provider.of<SelectionStyle>(context);
return EditableLine(
key: _key,
children: lineChildren,
devicePixelRatio: MediaQuery.of(context).devicePixelRatio,
node: this,
preferredLineHeight: options.fontSize,
cursorBlinkOpacityController:
Provider.of<Wrapper<AnimationController>>(context).value,
selection: conf.item1,
startHandleLayerLink: conf.item2,
endHandleLayerLink: conf.item3,
cursorColor: value.cursorColor,
cursorOffset: value.cursorOffset,
cursorRadius: value.cursorRadius,
cursorWidth: value.cursorWidth,
cursorHeight: value.cursorHeight,
hintingColor: value.hintingColor,
paintCursorAboveText: value.paintCursorAboveText,
selectionColor: value.selectionColor,
showCursor: value.showCursor,
);
},
),
);
});
return BuildResult(
options: options,
italic: flattenedBuildResults.lastOrNull?.italic ?? 0.0,
skew: flattenedBuildResults.length == 1
? flattenedBuildResults.first.italic
: 0.0,
widget: widget,
);
}
@override
List<MathOptions> computeChildOptions(MathOptions options) =>
List.filled(children.length, options, growable: false);
@override
bool shouldRebuildWidget(MathOptions oldOptions, MathOptions newOptions) =>
false;
@override
EquationRowNode updateChildren(List<GreenNode> newChildren) =>
copyWith(children: newChildren);
@override
AtomType get leftType => overrideType ?? AtomType.ord;
@override
AtomType get rightType => overrideType ?? AtomType.ord;
Map<String, Object?> toJson() => super.toJson()
..addAll({
'children': children.map((child) => child.toJson()).toList(),
if (overrideType != null) 'overrideType': overrideType,
});
/// Utility method.
EquationRowNode copyWith({
AtomType? overrideType,
List<GreenNode>? children,
}) =>
EquationRowNode(
overrideType: overrideType ?? this.overrideType,
children: children ?? this.children,
);
}
mixin _ClipChildrenMixin on ParentableNode<GreenNode> {
ParentableNode<GreenNode> clipChildrenBetween(int pos1, int pos2) {
final childIndex1 = childPositions.slotFor(pos1);
final childIndex2 = childPositions.slotFor(pos2);
final childIndex1Floor = childIndex1.floor();
final childIndex1Ceil = childIndex1.ceil();
final childIndex2Floor = childIndex2.floor();
final childIndex2Ceil = childIndex2.ceil();
GreenNode? head;
GreenNode? tail;
if (childIndex1Floor != childIndex1 &&
childIndex1Floor >= 0 &&
childIndex1Floor <= children.length - 1) {
final child = children[childIndex1Floor];
if (child is TransparentNode) {
head = child.clipChildrenBetween(
pos1 - childPositions[childIndex1Floor],
pos2 - childPositions[childIndex1Floor]);
} else {
head = child;
}
}
if (childIndex2Ceil != childIndex2 &&
childIndex2Floor >= 0 &&
childIndex2Floor <= children.length - 1) {
final child = children[childIndex2Floor];
if (child is TransparentNode) {
tail = child.clipChildrenBetween(
pos1 - childPositions[childIndex2Floor],
pos2 - childPositions[childIndex2Floor]);
} else {
tail = child;
}
}
return this.updateChildren(<GreenNode>[
if (head != null) head,
for (var i = childIndex1Ceil; i < childIndex2Floor; i++) children[i],
if (tail != null) tail,
]);
}
}
extension GreenNodeWrappingExt on GreenNode {
/// Wrap a node in [EquationRowNode]
///
/// If this node is already [EquationRowNode], then it won't be wrapped
EquationRowNode wrapWithEquationRow() {
if (this is EquationRowNode) {
return this as EquationRowNode;
}
return EquationRowNode(children: [this]);
}
/// If this node is [EquationRowNode], its children will be returned. If not,
/// itself will be returned in a list.
List<GreenNode> expandEquationRow() {
if (this is EquationRowNode) {
return (this as EquationRowNode).children;
}
return [this];
}
/// Return the only child of [EquationRowNode]
///
/// If the [EquationRowNode] has more than one child, an error will be thrown.
GreenNode unwrapEquationRow() {
if (this is EquationRowNode) {
if (this.children.length == 1) {
return (this as EquationRowNode).children[0];
}
throw ArgumentError(
'Unwrap equation row failed due to multiple children inside');
}
return this;
}
}
extension GreenNodeListWrappingExt on List<GreenNode> {
/// Wrap list of [GreenNode] in an [EquationRowNode]
///
/// If the list only contain one [EquationRowNode], then this note will be
/// returned.
EquationRowNode wrapWithEquationRow() {
if (this.length == 1 && this[0] is EquationRowNode) {
return this[0] as EquationRowNode;
}
return EquationRowNode(children: this);
}
}
/// [GreenNode] that doesn't have any children
abstract class LeafNode extends GreenNode {
/// [Mode] that this node acquires during parse.
Mode get mode;
@override
List<GreenNode> get children => const [];
@override
LeafNode updateChildren(List<GreenNode> newChildren) {
assert(newChildren.isEmpty);
return this;
}
@override
List<MathOptions> computeChildOptions(MathOptions options) => const [];
@override
List<int> get childPositions => const [];
@override
int get editingWidth => 1;
}
/// Type of atoms. See TeXBook Chap.17
///
/// These following types will be determined by their repective [GreenNode] type
/// - over
/// - under
/// - acc
/// - rad
/// - vcent
enum AtomType {
ord,
op,
bin,
rel,
open,
close,
punct,
inner,
spacing, // symbols
}
/// Only for improvisional use during parsing. Do not use.
class TemporaryNode extends LeafNode {
@override
Mode get mode => Mode.math;
@override
BuildResult buildWidget(
MathOptions options, List<BuildResult?> childBuildResults) =>
throw UnsupportedError('Temporary node $runtimeType encountered.');
@override
AtomType get leftType =>
throw UnsupportedError('Temporary node $runtimeType encountered.');
@override
AtomType get rightType =>
throw UnsupportedError('Temporary node $runtimeType encountered.');
@override
bool shouldRebuildWidget(MathOptions oldOptions, MathOptions newOptions) =>
throw UnsupportedError('Temporary node $runtimeType encountered.');
@override
int get editingWidth =>
throw UnsupportedError('Temporary node $runtimeType encountered.');
}
class BuildResult {
final Widget widget;
final MathOptions options;
final double italic;
final double skew;
final List<BuildResult>? results;
const BuildResult({
required this.widget,
required this.options,
this.italic = 0.0,
this.skew = 0.0,
this.results,
});
}
void _traverseNonSpaceNodes(
List<_NodeSpacingConf> childTypeList,
void Function(_NodeSpacingConf? prev, _NodeSpacingConf? curr) callback,
) {
_NodeSpacingConf? prev;
// Tuple2<AtomType, AtomType> curr;
for (final child in childTypeList) {
if (child.leftType == AtomType.spacing ||
child.rightType == AtomType.spacing) {
continue;
}
callback(prev, child);
prev = child;
}
if (prev != null) {
callback(prev, null);
}
}
class _NodeSpacingConf {
AtomType leftType;
AtomType rightType;
MathOptions options;
double spacingAfter;
_NodeSpacingConf(
this.leftType,
this.rightType,
this.options,
this.spacingAfter,
);
}