genavatar.py 4.34 KB
from os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse
import json, subprocess, random, string
from tqdm import tqdm
from glob import glob
import torch
import pickle
import face_detection


parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--img_size', default=96, type=int)
parser.add_argument('--avatar_id', default='wav2lip_avatar1', type=str)
parser.add_argument('--video_path', default='', type=str)
parser.add_argument('--nosmooth', default=False, action='store_true',
					help='Prevent smoothing face detections over a short temporal window')
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], 
					help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--face_det_batch_size', type=int, 
					help='Batch size for face detection', default=16)
args = parser.parse_args()

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))

def osmakedirs(path_list):
    for path in path_list:
        os.makedirs(path) if not os.path.exists(path) else None

def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000):
    cap = cv2.VideoCapture(vid_path)
    count = 0
    while True:
        if count > cut_frame:
            break
        ret, frame = cap.read()
        if ret:
            cv2.putText(frame, "Ewin", (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (128,128,128), 1)
            cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
            count += 1
        else:
            break

def read_imgs(img_list):
    frames = []
    print('reading images...')
    for img_path in tqdm(img_list):
        frame = cv2.imread(img_path)
        frames.append(frame)
    return frames

def get_smoothened_boxes(boxes, T):
	for i in range(len(boxes)):
		if i + T > len(boxes):
			window = boxes[len(boxes) - T:]
		else:
			window = boxes[i : i + T]
		boxes[i] = np.mean(window, axis=0)
	return boxes

def face_detect(images):
	detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, 
											flip_input=False, device=device)

	batch_size = args.face_det_batch_size
	
	while 1:
		predictions = []
		try:
			for i in tqdm(range(0, len(images), batch_size)):
				predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
		except RuntimeError:
			if batch_size == 1: 
				raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
			batch_size //= 2
			print('Recovering from OOM error; New batch size: {}'.format(batch_size))
			continue
		break

	results = []
	pady1, pady2, padx1, padx2 = args.pads
	for rect, image in zip(predictions, images):
		if rect is None:
			cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
			raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')

		y1 = max(0, rect[1] - pady1)
		y2 = min(image.shape[0], rect[3] + pady2)
		x1 = max(0, rect[0] - padx1)
		x2 = min(image.shape[1], rect[2] + padx2)
		
		results.append([x1, y1, x2, y2])

	boxes = np.array(results)
	if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
	results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]

	del detector
	return results 

if __name__ == "__main__":
    avatar_path = f"./results/avatars/{args.avatar_id}"
    full_imgs_path = f"{avatar_path}/full_imgs" 
    face_imgs_path = f"{avatar_path}/face_imgs" 
    coords_path = f"{avatar_path}/coords.pkl"
    osmakedirs([avatar_path,full_imgs_path,face_imgs_path])
    print(args)

    #if os.path.isfile(args.video_path):
    video2imgs(args.video_path, full_imgs_path, ext = 'png')
    input_img_list = sorted(glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]')))

    frames = read_imgs(input_img_list)
    face_det_results = face_detect(frames) 
    coord_list = []
    idx = 0
    for frame,coords in face_det_results:        
        #x1, y1, x2, y2 = bbox
        resized_crop_frame = cv2.resize(frame,(args.img_size, args.img_size)) #,interpolation = cv2.INTER_LANCZOS4)
        cv2.imwrite(f"{face_imgs_path}/{idx:08d}.png", resized_crop_frame)
        coord_list.append(coords)
        idx = idx + 1
	
    with open(coords_path, 'wb') as f:
        pickle.dump(coord_list, f)