genavatar.py
3.76 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import os
import cv2
import torch
import numpy as np
import torch.nn as nn
from torch import optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from unet import Model
import pickle
# from unet2 import Model
# from unet_att import Model
import time
def osmakedirs(path_list):
for path in path_list:
os.makedirs(path) if not os.path.exists(path) else None
parser = argparse.ArgumentParser(description='Train',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=str, default="")
#parser.add_argument('--save_path', type=str, default="") # end with .mp4 please
parser.add_argument('--checkpoint', type=str, default="")
parser.add_argument('--avatar_id', default='ultralight_avatar1', type=str)
args = parser.parse_args()
checkpoint = args.checkpoint
dataset_dir = args.dataset
img_dir = os.path.join(dataset_dir, "full_body_img/")
lms_dir = os.path.join(dataset_dir, "landmarks/")
avatar_path = f"./results/avatars/{args.avatar_id}"
full_imgs_path = f"{avatar_path}/full_imgs"
face_imgs_path = f"{avatar_path}/face_imgs"
coords_path = f"{avatar_path}/coords.pkl"
pth_path = f"{avatar_path}/ultralight.pth"
osmakedirs([avatar_path,full_imgs_path,face_imgs_path])
len_img = len(os.listdir(img_dir)) - 1
exm_img = cv2.imread(img_dir+"0.jpg")
h, w = exm_img.shape[:2]
step_stride = 0
img_idx = 0
coord_list = []
net = Model(6, 'hubert').cuda()
net.load_state_dict(torch.load(checkpoint))
net.eval()
for i in range(len_img):
if img_idx>len_img - 1:
step_stride = -1
if img_idx<1:
step_stride = 1
img_idx += step_stride
img_path = img_dir + str(img_idx)+'.jpg'
lms_path = lms_dir + str(img_idx)+'.lms'
img = cv2.imread(img_path)
lms_list = []
with open(lms_path, "r") as f:
lines = f.read().splitlines()
for line in lines:
arr = line.split(" ")
arr = np.array(arr, dtype=np.float32)
lms_list.append(arr)
lms = np.array(lms_list, dtype=np.int32)
xmin = lms[1][0]
ymin = lms[52][1]
xmax = lms[31][0]
width = xmax - xmin
ymax = ymin + width
crop_img = img[ymin:ymax, xmin:xmax]
h, w = crop_img.shape[:2]
crop_img = cv2.resize(crop_img, (168, 168), cv2.INTER_AREA)
crop_img_ori = crop_img.copy()
img_real_ex = crop_img[4:164, 4:164].copy()
img_real_ex_ori = img_real_ex.copy()
img_masked = cv2.rectangle(img_real_ex_ori,(5,5,150,145),(0,0,0),-1)
img_masked = img_masked.transpose(2,0,1).astype(np.float32)
img_real_ex = img_real_ex.transpose(2,0,1).astype(np.float32)
img_real_ex_T = torch.from_numpy(img_real_ex / 255.0)
img_masked_T = torch.from_numpy(img_masked / 255.0)
img_concat_T = torch.cat([img_real_ex_T, img_masked_T], axis=0)[None]
audio_feat = torch.zeros(1, 32, 32, 32)
#print('audio_feat:',audio_feat.shape)
audio_feat = audio_feat.cuda()
img_concat_T = img_concat_T.cuda()
#print('img_concat_T:',img_concat_T.shape)
with torch.no_grad():
pred = net(img_concat_T, audio_feat)[0]
pred = pred.cpu().numpy().transpose(1,2,0)*255
pred = np.array(pred, dtype=np.uint8)
crop_img_ori[4:164, 4:164] = pred
crop_img_ori = cv2.resize(crop_img_ori, (w, h))
img[ymin:ymax, xmin:xmax] = crop_img_ori
cv2.putText(img, "Ewin", (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (128,128,128), 1)
cv2.imwrite(f"{full_imgs_path}/{img_idx:08d}.png", img)
cv2.imwrite(f"{face_imgs_path}/{img_idx:08d}.png", crop_img)
coord_list.append((xmin, ymin, xmin+w, ymin+h))
with open(coords_path, 'wb') as f:
pickle.dump(coord_list, f)
os.system(f"cp {checkpoint} {pth_path}")
# ffmpeg -i test_video.mp4 -i test_audio.pcm -c:v libx264 -c:a aac result_test.mp4