provider.py 31 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
import os
import cv2
import glob
import json
import tqdm
import numpy as np
from scipy.spatial.transform import Slerp, Rotation
import matplotlib.pyplot as plt 

import trimesh

import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader

from .utils import get_audio_features, get_rays, get_bg_coords, convert_poses

# ref: https://github.com/NVlabs/instant-ngp/blob/b76004c8cf478880227401ae763be4c02f80b62f/include/neural-graphics-primitives/nerf_loader.h#L50
def nerf_matrix_to_ngp(pose, scale=0.33, offset=[0, 0, 0]):
    new_pose = np.array([
        [pose[1, 0], -pose[1, 1], -pose[1, 2], pose[1, 3] * scale + offset[0]],
        [pose[2, 0], -pose[2, 1], -pose[2, 2], pose[2, 3] * scale + offset[1]],
        [pose[0, 0], -pose[0, 1], -pose[0, 2], pose[0, 3] * scale + offset[2]],
        [0, 0, 0, 1],
    ], dtype=np.float32)
    return new_pose


def smooth_camera_path(poses, kernel_size=5):
    # smooth the camera trajectory...
    # poses: [N, 4, 4], numpy array

    N = poses.shape[0]
    K = kernel_size // 2
    
    trans = poses[:, :3, 3].copy() # [N, 3]
    rots = poses[:, :3, :3].copy() # [N, 3, 3]

    for i in range(N):
        start = max(0, i - K)
        end = min(N, i + K + 1)
        poses[i, :3, 3] = trans[start:end].mean(0)
        poses[i, :3, :3] = Rotation.from_matrix(rots[start:end]).mean().as_matrix()

    return poses

def polygon_area(x, y):
    x_ = x - x.mean()
    y_ = y - y.mean()
    correction = x_[-1] * y_[0] - y_[-1]* x_[0]
    main_area = np.dot(x_[:-1], y_[1:]) - np.dot(y_[:-1], x_[1:])
    return 0.5 * np.abs(main_area + correction)


def visualize_poses(poses, size=0.1):
    # poses: [B, 4, 4]

    print(f'[INFO] visualize poses: {poses.shape}')

    axes = trimesh.creation.axis(axis_length=4)
    box = trimesh.primitives.Box(extents=(2, 2, 2)).as_outline()
    box.colors = np.array([[128, 128, 128]] * len(box.entities))
    objects = [axes, box]

    for pose in poses:
        # a camera is visualized with 8 line segments.
        pos = pose[:3, 3]
        a = pos + size * pose[:3, 0] + size * pose[:3, 1] + size * pose[:3, 2]
        b = pos - size * pose[:3, 0] + size * pose[:3, 1] + size * pose[:3, 2]
        c = pos - size * pose[:3, 0] - size * pose[:3, 1] + size * pose[:3, 2]
        d = pos + size * pose[:3, 0] - size * pose[:3, 1] + size * pose[:3, 2]

        dir = (a + b + c + d) / 4 - pos
        dir = dir / (np.linalg.norm(dir) + 1e-8)
        o = pos + dir * 3

        segs = np.array([[pos, a], [pos, b], [pos, c], [pos, d], [a, b], [b, c], [c, d], [d, a], [pos, o]])
        segs = trimesh.load_path(segs)
        objects.append(segs)

    trimesh.Scene(objects).show()


class NeRFDataset_Test:
    def __init__(self, opt, device, downscale=1):
        super().__init__()
        
        self.opt = opt
        self.device = device
        self.downscale = downscale
        self.scale = opt.scale # camera radius scale to make sure camera are inside the bounding box.
        self.offset = opt.offset # camera offset
        self.bound = opt.bound # bounding box half length, also used as the radius to random sample poses.
        self.fp16 = opt.fp16

        self.start_index = opt.data_range[0]
        self.end_index = opt.data_range[1]

        self.training = False
        self.num_rays = -1
        self.preload = opt.preload # 0 = disk, 1 = cpu, 2 = gpu

        # load nerf-compatible format data.
        
        with open(opt.pose, 'r') as f:
            transform = json.load(f)

        # load image size
        self.H = int(transform['cy']) * 2 // downscale
        self.W = int(transform['cx']) * 2 // downscale
        
        # read images
        frames = transform["frames"]

        # use a slice of the dataset
        if self.end_index == -1: # abuse...
            self.end_index = len(frames)

        frames = frames[self.start_index:self.end_index]

        print(f'[INFO] load {len(frames)} frames.')

        # only load pre-calculated aud features when not live-streaming
        if not self.opt.asr:

            aud_features = np.load(self.opt.aud)

            aud_features = torch.from_numpy(aud_features)

            # support both [N, 16] labels and [N, 16, K] logits
            if len(aud_features.shape) == 3:
                aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16]    

                if self.opt.emb:
                    print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode')
                    aud_features = aud_features.argmax(1) # [N, 16]
            
            else:
                assert self.opt.emb, "aud only provide labels, must use --emb"
                aud_features = aud_features.long()

            print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}')

        # load action units
        import pandas as pd
        au_blink_info=pd.read_csv(self.opt.au)
        au_blink = au_blink_info[' AU45_r'].values

        self.poses = []
        self.auds = []
        self.eye_area = []
        self.torso_img = []

        for f in tqdm.tqdm(frames, desc=f'Loading data'):
            
            pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4]
            pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset)
            self.poses.append(pose)

            # find the corresponding audio to the image frame
            if not self.opt.asr and self.opt.aud == '':
                aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame...
                self.auds.append(aud)

            if self.opt.exp_eye:
                
                # if 'eye_ratio' in f:
                #     area = f['eye_ratio']
                # else:
                #     area = 0.25 # default value for opened eye
                # action units blink AU45
                area = au_blink[f['img_id']]
                area = np.clip(area, 0, 2) / 2
                # area = area + np.random.rand() / 10
                
                self.eye_area.append(area)
            
            # load frame-wise bg
        
            if self.opt.torso_imgs!='':
                torso_img_path = os.path.join(self.opt.torso_imgs, str(f['img_id']) + '.png')

                if self.preload > 0:
                    torso_img = cv2.imread(torso_img_path, cv2.IMREAD_UNCHANGED) # [H, W, 4]
                    torso_img = cv2.cvtColor(torso_img, cv2.COLOR_BGRA2RGBA)
                    torso_img = torso_img.astype(np.float32) / 255 # [H, W, 3/4]

                    self.torso_img.append(torso_img)
                else:
                    self.torso_img.append(torso_img_path)
        
        if self.opt.torso_imgs!='':
            if self.preload > 0:
                self.torso_img = torch.from_numpy(np.stack(self.torso_img, axis=0)) # [N, H, W, C]
            else:
                self.torso_img = np.array(self.torso_img)
            if self.preload > 1:  #gpu
                self.torso_img = self.torso_img.to(torch.half).to(self.device)
            
        
        # load pre-extracted background image (should be the same size as training image...)

        if self.opt.bg_img == 'white': # special
            bg_img = np.ones((self.H, self.W, 3), dtype=np.float32)
        elif self.opt.bg_img == 'black': # special
            bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32)
        else: # load from file
            bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3]
            if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W:
                bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA)
            bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
            bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4]

        self.bg_img = bg_img

        self.poses = np.stack(self.poses, axis=0)

        # smooth camera path...
        if self.opt.smooth_path:
            self.poses = smooth_camera_path(self.poses, self.opt.smooth_path_window)
            
        self.poses = torch.from_numpy(self.poses) # [N, 4, 4]
        
        if self.opt.asr:
            # live streaming, no pre-calculated auds
            self.auds = None
        else:
            # auds corresponding to images
            if self.opt.aud == '':
                self.auds = torch.stack(self.auds, dim=0) # [N, 32, 16]
            # auds is novel, may have a different length with images
            else:
                self.auds = aud_features
        
        self.bg_img = torch.from_numpy(self.bg_img)

        if self.preload > 1 or self.opt.torso_imgs=='':  #gpu
            self.bg_img = self.bg_img.to(torch.half).to(self.device)

        if self.opt.exp_eye:
            self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N]
            print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}')

            if self.opt.smooth_eye:

                # naive 5 window average
                ori_eye = self.eye_area.copy()
                for i in range(ori_eye.shape[0]):
                    start = max(0, i - 1)
                    end = min(ori_eye.shape[0], i + 2)
                    self.eye_area[i] = ori_eye[start:end].mean()

            self.eye_area = torch.from_numpy(self.eye_area).view(-1, 1) # [N, 1]

        # always preload
        self.poses = self.poses.to(self.device)

        if self.auds is not None:
            self.auds = self.auds.to(self.device)
        
        if self.opt.exp_eye:
            self.eye_area = self.eye_area.to(self.device)

        # load intrinsics
        
        fl_x = fl_y = transform['focal_len']

        cx = (transform['cx'] / downscale)
        cy = (transform['cy'] / downscale)

        self.intrinsics = np.array([fl_x, fl_y, cx, cy])

        # directly build the coordinate meshgrid in [-1, 1]^2
        self.bg_coords = get_bg_coords(self.H, self.W, self.device) # [1, H*W, 2] in [-1, 1]
    
    def mirror_index(self, index):
        size = self.poses.shape[0]
        turn = index // size
        res = index % size
        if turn % 2 == 0:
            return res
        else:
            return size - res - 1

    def collate(self, index):

        B = len(index) # a list of length 1
        # assert B == 1

        results = {}

        # audio use the original index
        if self.auds is not None:
            auds = get_audio_features(self.auds, self.opt.att, index[0]).to(self.device)
            results['auds'] = auds

        # head pose and bg image may mirror (replay --> <-- --> <--).
        index[0] = self.mirror_index(index[0])

        poses = self.poses[index].to(self.device) # [B, 4, 4]
        
        rays = get_rays(poses, self.intrinsics, self.H, self.W, self.num_rays, self.opt.patch_size)

        results['index'] = index # for ind. code
        results['H'] = self.H
        results['W'] = self.W
        results['rays_o'] = rays['rays_o']
        results['rays_d'] = rays['rays_d']

        if self.opt.exp_eye:
            results['eye'] = self.eye_area[index].to(self.device) # [1]
        else:
            results['eye'] = None
        
        # load bg
        if self.opt.torso_imgs!='':
            bg_torso_img = self.torso_img[index]
            if self.preload == 0: # on the fly loading
                bg_torso_img = cv2.imread(bg_torso_img[0], cv2.IMREAD_UNCHANGED) # [H, W, 4]
                bg_torso_img = cv2.cvtColor(bg_torso_img, cv2.COLOR_BGRA2RGBA)
                bg_torso_img = bg_torso_img.astype(np.float32) / 255 # [H, W, 3/4]
                bg_torso_img = torch.from_numpy(bg_torso_img).unsqueeze(0)
            bg_torso_img = bg_torso_img[..., :3] * bg_torso_img[..., 3:] + self.bg_img * (1 - bg_torso_img[..., 3:])
            bg_torso_img = bg_torso_img.view(B, -1, 3).to(self.device)
            if not self.opt.torso:
                bg_img = bg_torso_img
            else:
                bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
        else:
            bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)

        results['bg_color'] = bg_img

        bg_coords = self.bg_coords # [1, N, 2]
        results['bg_coords'] = bg_coords

        # results['poses'] = convert_poses(poses) # [B, 6]
        # results['poses_matrix'] = poses # [B, 4, 4]
        results['poses'] = poses # [B, 4, 4]

        return results

    def dataloader(self):

    
        # test with novel auds, then use its length
        if self.auds is not None:
            size = self.auds.shape[0]
        # live stream test, use 2 * len(poses), so it naturally mirrors.
        else:
            size = 2 * self.poses.shape[0]

        loader = DataLoader(list(range(size)), batch_size=1, collate_fn=self.collate, shuffle=False, num_workers=0)
        loader._data = self # an ugly fix... we need poses in trainer.

        # do evaluate if has gt images and use self-driven setting
        loader.has_gt = False

        return loader


class NeRFDataset:
    def __init__(self, opt, device, type='train', downscale=1):
        super().__init__()
        
        self.opt = opt
        self.device = device
        self.type = type # train, val, test
        self.downscale = downscale
        self.root_path = opt.path
        self.preload = opt.preload # 0 = disk, 1 = cpu, 2 = gpu
        self.scale = opt.scale # camera radius scale to make sure camera are inside the bounding box.
        self.offset = opt.offset # camera offset
        self.bound = opt.bound # bounding box half length, also used as the radius to random sample poses.
        self.fp16 = opt.fp16

        self.start_index = opt.data_range[0]
        self.end_index = opt.data_range[1]

        self.training = self.type in ['train', 'all', 'trainval']
        self.num_rays = self.opt.num_rays if self.training else -1

        # load nerf-compatible format data.
      
         # load all splits (train/valid/test)
        if type == 'all':
            transform_paths = glob.glob(os.path.join(self.root_path, '*.json'))
            transform = None
            for transform_path in transform_paths:
                with open(transform_path, 'r') as f:
                    tmp_transform = json.load(f)
                    if transform is None:
                        transform = tmp_transform
                    else:
                        transform['frames'].extend(tmp_transform['frames'])
        # load train and val split
        elif type == 'trainval':
            with open(os.path.join(self.root_path, f'transforms_train.json'), 'r') as f:
                transform = json.load(f)
            with open(os.path.join(self.root_path, f'transforms_val.json'), 'r') as f:
                transform_val = json.load(f)
            transform['frames'].extend(transform_val['frames'])
        # only load one specified split
        else:
            # no test, use val as test
            _split = 'val' if type == 'test' else type
            with open(os.path.join(self.root_path, f'transforms_{_split}.json'), 'r') as f:
                transform = json.load(f)

        # load image size
        if 'h' in transform and 'w' in transform:
            self.H = int(transform['h']) // downscale
            self.W = int(transform['w']) // downscale
        else:
            self.H = int(transform['cy']) * 2 // downscale
            self.W = int(transform['cx']) * 2 // downscale
        
        # read images
        frames = transform["frames"]

        # use a slice of the dataset
        if self.end_index == -1: # abuse...
            self.end_index = len(frames)

        frames = frames[self.start_index:self.end_index]
        print(f'[INFO] load {len(frames)} {type} frames.')

        # only load pre-calculated aud features when not live-streaming
        if not self.opt.asr:

            # empty means the default self-driven extracted features.
            if self.opt.aud == '':
                if 'esperanto' in self.opt.asr_model:
                    aud_features = np.load(os.path.join(self.root_path, 'aud_eo.npy'))
                elif 'deepspeech' in self.opt.asr_model:
                    aud_features = np.load(os.path.join(self.root_path, 'aud_ds.npy'))
                # elif 'hubert_cn' in self.opt.asr_model:
                #     aud_features = np.load(os.path.join(self.root_path, 'aud_hu_cn.npy'))
                elif 'hubert' in self.opt.asr_model:
                    aud_features = np.load(os.path.join(self.root_path, 'aud_hu.npy'))
                else:
                    aud_features = np.load(os.path.join(self.root_path, 'aud.npy'))
            # cross-driven extracted features. 
            else:
                aud_features = np.load(self.opt.aud)

            aud_features = torch.from_numpy(aud_features)

            # support both [N, 16] labels and [N, 16, K] logits
            if len(aud_features.shape) == 3:
                aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16]    

                if self.opt.emb:
                    print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode')
                    aud_features = aud_features.argmax(1) # [N, 16]
            
            else:
                assert self.opt.emb, "aud only provide labels, must use --emb"
                aud_features = aud_features.long()

            print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}')

        # load action units
        import pandas as pd
        au_blink_info=pd.read_csv(os.path.join(self.root_path, 'au.csv'))
        au_blink = au_blink_info[' AU45_r'].values

        self.torso_img = []
        self.images = []

        self.poses = []
        self.exps = []

        self.auds = []
        self.face_rect = []
        self.lhalf_rect = []
        self.lips_rect = []
        self.eye_area = []
        self.eye_rect = []

        for f in tqdm.tqdm(frames, desc=f'Loading {type} data'):

            f_path = os.path.join(self.root_path, 'gt_imgs', str(f['img_id']) + '.jpg')

            if not os.path.exists(f_path):
                print('[WARN]', f_path, 'NOT FOUND!')
                continue
            
            pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4]
            pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset)
            self.poses.append(pose)

            if self.preload > 0:
                image = cv2.imread(f_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] o [H, W, 4]
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                image = image.astype(np.float32) / 255 # [H, W, 3/4]

                self.images.append(image)
            else:
                self.images.append(f_path)

            # load frame-wise bg
        
            torso_img_path = os.path.join(self.root_path, 'torso_imgs', str(f['img_id']) + '.png')

            if self.preload > 0:
                torso_img = cv2.imread(torso_img_path, cv2.IMREAD_UNCHANGED) # [H, W, 4]
                torso_img = cv2.cvtColor(torso_img, cv2.COLOR_BGRA2RGBA)
                torso_img = torso_img.astype(np.float32) / 255 # [H, W, 3/4]

                self.torso_img.append(torso_img)
            else:
                self.torso_img.append(torso_img_path)

            # find the corresponding audio to the image frame
            if not self.opt.asr and self.opt.aud == '':
                aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame...
                self.auds.append(aud)

            # load lms and extract face
            lms = np.loadtxt(os.path.join(self.root_path, 'ori_imgs', str(f['img_id']) + '.lms')) # [68, 2]

            lh_xmin, lh_xmax = int(lms[31:36, 1].min()), int(lms[:, 1].max()) # actually lower half area
            xmin, xmax = int(lms[:, 1].min()), int(lms[:, 1].max())
            ymin, ymax = int(lms[:, 0].min()), int(lms[:, 0].max())
            self.face_rect.append([xmin, xmax, ymin, ymax])
            self.lhalf_rect.append([lh_xmin, lh_xmax, ymin, ymax])

            if self.opt.exp_eye:
                # eyes_left = slice(36, 42)
                # eyes_right = slice(42, 48)

                # area_left = polygon_area(lms[eyes_left, 0], lms[eyes_left, 1])
                # area_right = polygon_area(lms[eyes_right, 0], lms[eyes_right, 1])

                # # area percentage of two eyes of the whole image...
                # area = (area_left + area_right) / (self.H * self.W) * 100

                # action units blink AU45
                area = au_blink[f['img_id']]
                area = np.clip(area, 0, 2) / 2
                # area = area + np.random.rand() / 10
                self.eye_area.append(area)

                xmin, xmax = int(lms[36:48, 1].min()), int(lms[36:48, 1].max())
                ymin, ymax = int(lms[36:48, 0].min()), int(lms[36:48, 0].max())
                self.eye_rect.append([xmin, xmax, ymin, ymax])

            if self.opt.finetune_lips:
                lips = slice(48, 60)
                xmin, xmax = int(lms[lips, 1].min()), int(lms[lips, 1].max())
                ymin, ymax = int(lms[lips, 0].min()), int(lms[lips, 0].max())

                # padding to H == W
                cx = (xmin + xmax) // 2
                cy = (ymin + ymax) // 2

                l = max(xmax - xmin, ymax - ymin) // 2
                xmin = max(0, cx - l)
                xmax = min(self.H, cx + l)
                ymin = max(0, cy - l)
                ymax = min(self.W, cy + l)

                self.lips_rect.append([xmin, xmax, ymin, ymax])
        
        # load pre-extracted background image (should be the same size as training image...)

        if self.opt.bg_img == 'white': # special
            bg_img = np.ones((self.H, self.W, 3), dtype=np.float32)
        elif self.opt.bg_img == 'black': # special
            bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32)
        else: # load from file
            # default bg
            if self.opt.bg_img == '':
                self.opt.bg_img = os.path.join(self.root_path, 'bc.jpg')
            bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3]
            if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W:
                bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA)
            bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
            bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4]

        self.bg_img = bg_img

        self.poses = np.stack(self.poses, axis=0)

        # smooth camera path...
        if self.opt.smooth_path:
            self.poses = smooth_camera_path(self.poses, self.opt.smooth_path_window)
            
        self.poses = torch.from_numpy(self.poses) # [N, 4, 4]

        if self.preload > 0:
            self.images = torch.from_numpy(np.stack(self.images, axis=0)) # [N, H, W, C]
            self.torso_img = torch.from_numpy(np.stack(self.torso_img, axis=0)) # [N, H, W, C]
        else:
            self.images = np.array(self.images)
            self.torso_img = np.array(self.torso_img)

        if self.opt.asr:
            # live streaming, no pre-calculated auds
            self.auds = None
        else:
            # auds corresponding to images
            if self.opt.aud == '':
                self.auds = torch.stack(self.auds, dim=0) # [N, 32, 16]
            # auds is novel, may have a different length with images
            else:
                self.auds = aud_features
        
        self.bg_img = torch.from_numpy(self.bg_img)

        if self.opt.exp_eye:
            self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N]
            print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}')

            if self.opt.smooth_eye:

                # naive 5 window average
                ori_eye = self.eye_area.copy()
                for i in range(ori_eye.shape[0]):
                    start = max(0, i - 1)
                    end = min(ori_eye.shape[0], i + 2)
                    self.eye_area[i] = ori_eye[start:end].mean()

            self.eye_area = torch.from_numpy(self.eye_area).view(-1, 1) # [N, 1]

        
        # calculate mean radius of all camera poses
        self.radius = self.poses[:, :3, 3].norm(dim=-1).mean(0).item()
        #print(f'[INFO] dataset camera poses: radius = {self.radius:.4f}, bound = {self.bound}')

        
        # [debug] uncomment to view all training poses.
        # visualize_poses(self.poses.numpy())

        # [debug] uncomment to view examples of randomly generated poses.
        # visualize_poses(rand_poses(100, self.device, radius=self.radius).cpu().numpy())

        if self.preload > 1:
            self.poses = self.poses.to(self.device)

            if self.auds is not None:
                self.auds = self.auds.to(self.device)

            self.bg_img = self.bg_img.to(torch.half).to(self.device)

            self.torso_img = self.torso_img.to(torch.half).to(self.device)
            self.images = self.images.to(torch.half).to(self.device)
            
            if self.opt.exp_eye:
                self.eye_area = self.eye_area.to(self.device)

        # load intrinsics
        if 'focal_len' in transform:
            fl_x = fl_y = transform['focal_len']
        elif 'fl_x' in transform or 'fl_y' in transform:
            fl_x = (transform['fl_x'] if 'fl_x' in transform else transform['fl_y']) / downscale
            fl_y = (transform['fl_y'] if 'fl_y' in transform else transform['fl_x']) / downscale
        elif 'camera_angle_x' in transform or 'camera_angle_y' in transform:
            # blender, assert in radians. already downscaled since we use H/W
            fl_x = self.W / (2 * np.tan(transform['camera_angle_x'] / 2)) if 'camera_angle_x' in transform else None
            fl_y = self.H / (2 * np.tan(transform['camera_angle_y'] / 2)) if 'camera_angle_y' in transform else None
            if fl_x is None: fl_x = fl_y
            if fl_y is None: fl_y = fl_x
        else:
            raise RuntimeError('Failed to load focal length, please check the transforms.json!')

        cx = (transform['cx'] / downscale) if 'cx' in transform else (self.W / 2)
        cy = (transform['cy'] / downscale) if 'cy' in transform else (self.H / 2)
    
        self.intrinsics = np.array([fl_x, fl_y, cx, cy])

        # directly build the coordinate meshgrid in [-1, 1]^2
        self.bg_coords = get_bg_coords(self.H, self.W, self.device) # [1, H*W, 2] in [-1, 1]


    def mirror_index(self, index):
        size = self.poses.shape[0]
        turn = index // size
        res = index % size
        if turn % 2 == 0:
            return res
        else:
            return size - res - 1


    def collate(self, index):

        B = len(index) # a list of length 1
        # assert B == 1

        results = {}

        # audio use the original index
        if self.auds is not None:
            auds = get_audio_features(self.auds, self.opt.att, index[0]).to(self.device)
            results['auds'] = auds

        # head pose and bg image may mirror (replay --> <-- --> <--).
        index[0] = self.mirror_index(index[0])

        poses = self.poses[index].to(self.device) # [B, 4, 4]
        
        if self.training and self.opt.finetune_lips:
            rect = self.lips_rect[index[0]]
            results['rect'] = rect
            rays = get_rays(poses, self.intrinsics, self.H, self.W, -1, rect=rect)
        else:
            rays = get_rays(poses, self.intrinsics, self.H, self.W, self.num_rays, self.opt.patch_size)

        results['index'] = index # for ind. code
        results['H'] = self.H
        results['W'] = self.W
        results['rays_o'] = rays['rays_o']
        results['rays_d'] = rays['rays_d']

        # get a mask for rays inside rect_face
        if self.training:
            xmin, xmax, ymin, ymax = self.face_rect[index[0]]
            face_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
            results['face_mask'] = face_mask
            
            xmin, xmax, ymin, ymax = self.lhalf_rect[index[0]]
            lhalf_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
            results['lhalf_mask'] = lhalf_mask

        if self.opt.exp_eye:
            results['eye'] = self.eye_area[index].to(self.device) # [1]
            if self.training:
                results['eye'] += (np.random.rand()-0.5) / 10
                xmin, xmax, ymin, ymax = self.eye_rect[index[0]]
                eye_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
                results['eye_mask'] = eye_mask

        else:
            results['eye'] = None

        # load bg
        bg_torso_img = self.torso_img[index]
        if self.preload == 0: # on the fly loading
            bg_torso_img = cv2.imread(bg_torso_img[0], cv2.IMREAD_UNCHANGED) # [H, W, 4]
            bg_torso_img = cv2.cvtColor(bg_torso_img, cv2.COLOR_BGRA2RGBA)
            bg_torso_img = bg_torso_img.astype(np.float32) / 255 # [H, W, 3/4]
            bg_torso_img = torch.from_numpy(bg_torso_img).unsqueeze(0)
        bg_torso_img = bg_torso_img[..., :3] * bg_torso_img[..., 3:] + self.bg_img * (1 - bg_torso_img[..., 3:])
        bg_torso_img = bg_torso_img.view(B, -1, 3).to(self.device)

        if not self.opt.torso:
            bg_img = bg_torso_img
        else:
            bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)

        if self.training:
            bg_img = torch.gather(bg_img, 1, torch.stack(3 * [rays['inds']], -1)) # [B, N, 3]

        results['bg_color'] = bg_img

        if self.opt.torso and self.training:
            bg_torso_img = torch.gather(bg_torso_img, 1, torch.stack(3 * [rays['inds']], -1)) # [B, N, 3]
            results['bg_torso_color'] = bg_torso_img

        images = self.images[index] # [B, H, W, 3/4]
        if self.preload == 0:
            images = cv2.imread(images[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
            images = cv2.cvtColor(images, cv2.COLOR_BGR2RGB)
            images = images.astype(np.float32) / 255 # [H, W, 3]
            images = torch.from_numpy(images).unsqueeze(0)
        images = images.to(self.device)

        if self.training:
            C = images.shape[-1]
            images = torch.gather(images.view(B, -1, C), 1, torch.stack(C * [rays['inds']], -1)) # [B, N, 3/4]
            
        results['images'] = images

        if self.training:
            bg_coords = torch.gather(self.bg_coords, 1, torch.stack(2 * [rays['inds']], -1)) # [1, N, 2]
        else:
            bg_coords = self.bg_coords # [1, N, 2]

        results['bg_coords'] = bg_coords

        # results['poses'] = convert_poses(poses) # [B, 6]
        # results['poses_matrix'] = poses # [B, 4, 4]
        results['poses'] = poses # [B, 4, 4]
            
        return results

    def dataloader(self):

        if self.training:
            # training len(poses) == len(auds)
            size = self.poses.shape[0]
        else:
            # test with novel auds, then use its length
            if self.auds is not None:
                size = self.auds.shape[0]
            # live stream test, use 2 * len(poses), so it naturally mirrors.
            else:
                size = 2 * self.poses.shape[0]

        loader = DataLoader(list(range(size)), batch_size=1, collate_fn=self.collate, shuffle=self.training, num_workers=0)
        loader._data = self # an ugly fix... we need poses in trainer.

        # do evaluate if has gt images and use self-driven setting
        loader.has_gt = (self.opt.aud == '')

        return loader