app.py 22.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
###############################################################################
#  Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking
#  email: lipku@foxmail.com
# 
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  
#       http://www.apache.org/licenses/LICENSE-2.0
# 
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
###############################################################################

# server.py
from flask import Flask, render_template,send_from_directory,request, jsonify
from flask_sockets import Sockets
import base64
import json
#import gevent
#from gevent import pywsgi
#from geventwebsocket.handler import WebSocketHandler
import re
import numpy as np
from threading import Thread,Event
#import multiprocessing
import torch.multiprocessing as mp

from aiohttp import web
import aiohttp
import aiohttp_cors
from aiortc import RTCPeerConnection, RTCSessionDescription
from aiortc.rtcrtpsender import RTCRtpSender
from webrtc import HumanPlayer
from basereal import BaseReal
from llm import llm_response

import argparse
import random
import shutil
import asyncio
import torch
from typing import Dict
from logger import logger
from pydub import AudioSegment  
from io import BytesIO


app = Flask(__name__)
#sockets = Sockets(app)
nerfreals:Dict[int, BaseReal] = {} #sessionid:BaseReal
opt = None
model = None
avatar = None
        

#####webrtc###############################
pcs = set()

def randN(N)->int:
    '''生成长度为 N的随机数 '''
    min = pow(10, N - 1)
    max = pow(10, N)
    return random.randint(min, max - 1)

def build_nerfreal(sessionid:int)->BaseReal:
    opt.sessionid=sessionid
    if opt.model == 'wav2lip':
        from lipreal import LipReal
        nerfreal = LipReal(opt,model,avatar)
    elif opt.model == 'musetalk':
        from musereal import MuseReal
        nerfreal = MuseReal(opt,model,avatar)
    elif opt.model == 'ernerf':
        from nerfreal import NeRFReal
        nerfreal = NeRFReal(opt,model,avatar)
    elif opt.model == 'ultralight':
        from lightreal import LightReal
        nerfreal = LightReal(opt,model,avatar)
    return nerfreal

#@app.route('/offer', methods=['POST'])
async def offer(request):
    params = await request.json()
    offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"])

    if len(nerfreals) >= opt.max_session:
        logger.info('reach max session')
        return -1
    sessionid = randN(6) #len(nerfreals)
    logger.info('sessionid=%d',sessionid)
    nerfreals[sessionid] = None
    nerfreal = await asyncio.get_event_loop().run_in_executor(None, build_nerfreal,sessionid)
    nerfreals[sessionid] = nerfreal
    
    pc = RTCPeerConnection()
    pcs.add(pc)

    @pc.on("connectionstatechange")
    async def on_connectionstatechange():
        logger.info("Connection state is %s" % pc.connectionState)
        if pc.connectionState == "failed":
            await pc.close()
            pcs.discard(pc)
            del nerfreals[sessionid]
        if pc.connectionState == "closed":
            pcs.discard(pc)
            del nerfreals[sessionid]

    player = HumanPlayer(nerfreals[sessionid])
    audio_sender = pc.addTrack(player.audio)
    video_sender = pc.addTrack(player.video)
    capabilities = RTCRtpSender.getCapabilities("video")
    preferences = list(filter(lambda x: x.name == "H264", capabilities.codecs))
    preferences += list(filter(lambda x: x.name == "VP8", capabilities.codecs))
    preferences += list(filter(lambda x: x.name == "rtx", capabilities.codecs))
    transceiver = pc.getTransceivers()[1]
    transceiver.setCodecPreferences(preferences)

    await pc.setRemoteDescription(offer)

    answer = await pc.createAnswer()
    await pc.setLocalDescription(answer)

    #return jsonify({"sdp": pc.localDescription.sdp, "type": pc.localDescription.type})

    return web.Response(
        content_type="application/json",
        text=json.dumps(
            {"sdp": pc.localDescription.sdp, "type": pc.localDescription.type, "sessionid":sessionid}
        ),
    )

async def human(request):
    params = await request.json()

    sessionid = params.get('sessionid',0)
    if params.get('interrupt'):
        nerfreals[sessionid].flush_talk()

    if params['type']=='echo':
        nerfreals[sessionid].put_msg_txt(params['text'])
    elif params['type']=='chat':
        res=await asyncio.get_event_loop().run_in_executor(None, llm_response, params['text'],nerfreals[sessionid])                         
        #nerfreals[sessionid].put_msg_txt(res)

    return web.Response(
        content_type="application/json",
        text=json.dumps(
            {"code": 0, "data":"ok"}
        ),
    )

async def humanaudio(request):
    try:
        params = await request.json()
        sessionid = int(params.get('sessionid', 0))
        fileobj = params.get('file_url')
        
        # 获取音频文件数据
        if isinstance(fileobj, str) and fileobj.startswith("http"):
            async with aiohttp.ClientSession() as session:
                async with session.get(fileobj) as response:
                    if response.status == 200:
                        filebytes = await response.read()
                    else:
                        return web.Response(
                            content_type="application/json",
                            text=json.dumps({"code": -1, "msg": "Error downloading file"})
                        )
            # 根据 URL 后缀判断是否为 MP3 文件
            is_mp3 = fileobj.lower().endswith('.mp3')
        else:
            filename = fileobj.filename
            filebytes = fileobj.file.read()
            is_mp3 = filename.lower().endswith('.mp3')
        
        if is_mp3:
            audio = AudioSegment.from_file(BytesIO(filebytes), format="mp3")
            out_io = BytesIO()
            audio.export(out_io, format="wav")
            filebytes = out_io.getvalue()
        
        nerfreals[sessionid].put_audio_file(filebytes)

        return web.Response(
            content_type="application/json",
            text=json.dumps({"code": 0, "msg": "ok"})
        )
        
    except Exception as e:
        return web.Response(
            content_type="application/json",
            text=json.dumps({"code": -1, "msg": "err", "data": str(e)})
        )

async def set_audiotype(request):
    params = await request.json()

    sessionid = params.get('sessionid',0)    
    nerfreals[sessionid].set_curr_state(params['audiotype'],params['reinit'])

    return web.Response(
        content_type="application/json",
        text=json.dumps(
            {"code": 0, "data":"ok"}
        ),
    )

async def record(request):
    params = await request.json()

    sessionid = params.get('sessionid',0)
    if params['type']=='start_record':
        # nerfreals[sessionid].put_msg_txt(params['text'])
        nerfreals[sessionid].start_recording()
    elif params['type']=='end_record':
        nerfreals[sessionid].stop_recording()
    return web.Response(
        content_type="application/json",
        text=json.dumps(
            {"code": 0, "data":"ok"}
        ),
    )

async def is_speaking(request):
    params = await request.json()

    sessionid = params.get('sessionid',0)
    return web.Response(
        content_type="application/json",
        text=json.dumps(
            {"code": 0, "data": nerfreals[sessionid].is_speaking()}
        ),
    )


async def on_shutdown(app):
    # close peer connections
    coros = [pc.close() for pc in pcs]
    await asyncio.gather(*coros)
    pcs.clear()

async def post(url,data):
    try:
        async with aiohttp.ClientSession() as session:
            async with session.post(url,data=data) as response:
                return await response.text()
    except aiohttp.ClientError as e:
        logger.info(f'Error: {e}')

async def run(push_url,sessionid):
    nerfreal = await asyncio.get_event_loop().run_in_executor(None, build_nerfreal,sessionid)
    nerfreals[sessionid] = nerfreal

    pc = RTCPeerConnection()
    pcs.add(pc)

    @pc.on("connectionstatechange")
    async def on_connectionstatechange():
        logger.info("Connection state is %s" % pc.connectionState)
        if pc.connectionState == "failed":
            await pc.close()
            pcs.discard(pc)

    player = HumanPlayer(nerfreals[sessionid])
    audio_sender = pc.addTrack(player.audio)
    video_sender = pc.addTrack(player.video)

    await pc.setLocalDescription(await pc.createOffer())
    answer = await post(push_url,pc.localDescription.sdp)
    await pc.setRemoteDescription(RTCSessionDescription(sdp=answer,type='answer'))
##########################################
# os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
# os.environ['MULTIPROCESSING_METHOD'] = 'forkserver'                                                    
if __name__ == '__main__':
    mp.set_start_method('spawn')
    parser = argparse.ArgumentParser()
    parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source")
    parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area")
    parser.add_argument('--torso_imgs', type=str, default="", help="torso images path")

    parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye")

    parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use")
    parser.add_argument('--workspace', type=str, default='data/video')
    parser.add_argument('--seed', type=int, default=0)

    ### training options
    parser.add_argument('--ckpt', type=str, default='data/pretrained/ngp_kf.pth')
   
    parser.add_argument('--num_rays', type=int, default=4096 * 16, help="num rays sampled per image for each training step")
    parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
    parser.add_argument('--max_steps', type=int, default=16, help="max num steps sampled per ray (only valid when using --cuda_ray)")
    parser.add_argument('--num_steps', type=int, default=16, help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
    parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
    parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
    parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")

    ### loss set
    parser.add_argument('--warmup_step', type=int, default=10000, help="warm up steps")
    parser.add_argument('--amb_aud_loss', type=int, default=1, help="use ambient aud loss")
    parser.add_argument('--amb_eye_loss', type=int, default=1, help="use ambient eye loss")
    parser.add_argument('--unc_loss', type=int, default=1, help="use uncertainty loss")
    parser.add_argument('--lambda_amb', type=float, default=1e-4, help="lambda for ambient loss")

    ### network backbone options
    parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
    
    parser.add_argument('--bg_img', type=str, default='white', help="background image")
    parser.add_argument('--fbg', action='store_true', help="frame-wise bg")
    parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes")
    parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye")
    parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence")

    parser.add_argument('--torso_shrink', type=float, default=0.8, help="shrink bg coords to allow more flexibility in deform")

    ### dataset options
    parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)")
    parser.add_argument('--preload', type=int, default=0, help="0 means load data from disk on-the-fly, 1 means preload to CPU, 2 means GPU.")
    # (the default value is for the fox dataset)
    parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
    parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3")
    parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location")
    parser.add_argument('--dt_gamma', type=float, default=1/256, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
    parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera")
    parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied (sigma)")
    parser.add_argument('--density_thresh_torso', type=float, default=0.01, help="threshold for density grid to be occupied (alpha)")
    parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")

    parser.add_argument('--init_lips', action='store_true', help="init lips region")
    parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region")
    parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...")

    parser.add_argument('--torso', action='store_true', help="fix head and train torso")
    parser.add_argument('--head_ckpt', type=str, default='', help="head model")

    ### GUI options
    parser.add_argument('--gui', action='store_true', help="start a GUI")
    parser.add_argument('--W', type=int, default=450, help="GUI width")
    parser.add_argument('--H', type=int, default=450, help="GUI height")
    parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center")
    parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy")
    parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")

    ### else
    parser.add_argument('--att', type=int, default=2, help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)")
    parser.add_argument('--aud', type=str, default='', help="audio source (empty will load the default, else should be a path to a npy file)")
    parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits")

    parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off")
    parser.add_argument('--ind_num', type=int, default=10000, help="number of individual codes, should be larger than training dataset size")

    parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off")

    parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension")
    parser.add_argument('--part', action='store_true', help="use partial training data (1/10)")
    parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)")

    parser.add_argument('--train_camera', action='store_true', help="optimize camera pose")
    parser.add_argument('--smooth_path', action='store_true', help="brute-force smooth camera pose trajectory with a window size")
    parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size")

    # asr
    parser.add_argument('--asr', action='store_true', help="load asr for real-time app")
    parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input")
    parser.add_argument('--asr_play', action='store_true', help="play out the audio")

    #parser.add_argument('--asr_model', type=str, default='deepspeech')
    parser.add_argument('--asr_model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto') #
    # parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
    # parser.add_argument('--asr_model', type=str, default='facebook/hubert-large-ls960-ft')

    parser.add_argument('--asr_save_feats', action='store_true')
    # audio FPS
    parser.add_argument('--fps', type=int, default=50)
    # sliding window left-middle-right length (unit: 20ms)
    parser.add_argument('-l', type=int, default=10)
    parser.add_argument('-m', type=int, default=8)
    parser.add_argument('-r', type=int, default=10)

    parser.add_argument('--fullbody', action='store_true', help="fullbody human")
    parser.add_argument('--fullbody_img', type=str, default='data/fullbody/img')
    parser.add_argument('--fullbody_width', type=int, default=580)
    parser.add_argument('--fullbody_height', type=int, default=1080)
    parser.add_argument('--fullbody_offset_x', type=int, default=0)
    parser.add_argument('--fullbody_offset_y', type=int, default=0)

    #musetalk opt
    parser.add_argument('--avatar_id', type=str, default='avator_1')
    parser.add_argument('--bbox_shift', type=int, default=5)
    parser.add_argument('--batch_size', type=int, default=16)

    # parser.add_argument('--customvideo', action='store_true', help="custom video")
    # parser.add_argument('--customvideo_img', type=str, default='data/customvideo/img')
    # parser.add_argument('--customvideo_imgnum', type=int, default=1)

    parser.add_argument('--customvideo_config', type=str, default='')

    parser.add_argument('--tts', type=str, default='edgetts') #xtts gpt-sovits cosyvoice
    parser.add_argument('--REF_FILE', type=str, default=None)
    parser.add_argument('--REF_TEXT', type=str, default=None)
    parser.add_argument('--TTS_SERVER', type=str, default='http://127.0.0.1:9880') # http://localhost:9000
    # parser.add_argument('--CHARACTER', type=str, default='test')
    # parser.add_argument('--EMOTION', type=str, default='default')

    parser.add_argument('--model', type=str, default='ernerf') #musetalk wav2lip

    parser.add_argument('--transport', type=str, default='rtcpush') #rtmp webrtc rtcpush
    parser.add_argument('--push_url', type=str, default='http://localhost:1985/rtc/v1/whip/?app=live&stream=livestream') #rtmp://localhost/live/livestream

    parser.add_argument('--max_session', type=int, default=1)  #multi session count
    parser.add_argument('--listenport', type=int, default=8010)

    opt = parser.parse_args()
    #app.config.from_object(opt)
    #print(app.config)
    opt.customopt = []
    if opt.customvideo_config!='':
        with open(opt.customvideo_config,'r') as file:
            opt.customopt = json.load(file)

    if opt.model == 'ernerf':       
        from nerfreal import NeRFReal,load_model,load_avatar
        model = load_model(opt)
        avatar = load_avatar(opt) 
        
        # we still need test_loader to provide audio features for testing.
        # for k in range(opt.max_session):
        #     opt.sessionid=k
        #     nerfreal = NeRFReal(opt, trainer, test_loader,audio_processor,audio_model)
        #     nerfreals.append(nerfreal)
    elif opt.model == 'musetalk':
        from musereal import MuseReal,load_model,load_avatar,warm_up
        logger.info(opt)
        model = load_model()
        avatar = load_avatar(opt.avatar_id) 
        warm_up(opt.batch_size,model)      
        # for k in range(opt.max_session):
        #     opt.sessionid=k
        #     nerfreal = MuseReal(opt,audio_processor,vae, unet, pe,timesteps)
        #     nerfreals.append(nerfreal)
    elif opt.model == 'wav2lip':
        from lipreal import LipReal,load_model,load_avatar,warm_up
        logger.info(opt)
        model = load_model("./models/wav2lip.pth")
        avatar = load_avatar(opt.avatar_id)
        warm_up(opt.batch_size,model,256)
        # for k in range(opt.max_session):
        #     opt.sessionid=k
        #     nerfreal = LipReal(opt,model)
        #     nerfreals.append(nerfreal)
    elif opt.model == 'ultralight':
        from lightreal import LightReal,load_model,load_avatar,warm_up
        logger.info(opt)
        model = load_model(opt)
        avatar = load_avatar(opt.avatar_id)
        warm_up(opt.batch_size,avatar,160)

    if opt.transport=='rtmp':
        thread_quit = Event()
        nerfreals[0] = build_nerfreal(0)
        rendthrd = Thread(target=nerfreals[0].render,args=(thread_quit,))
        rendthrd.start()

    #############################################################################
    appasync = web.Application()
    appasync.on_shutdown.append(on_shutdown)
    appasync.router.add_post("/offer", offer)
    appasync.router.add_post("/human", human)
    appasync.router.add_post("/humanaudio", humanaudio)
    appasync.router.add_post("/set_audiotype", set_audiotype)
    appasync.router.add_post("/record", record)
    appasync.router.add_post("/is_speaking", is_speaking)
    appasync.router.add_static('/',path='web')

    # Configure default CORS settings.
    cors = aiohttp_cors.setup(appasync, defaults={
            "*": aiohttp_cors.ResourceOptions(
                allow_credentials=True,
                expose_headers="*",
                allow_headers="*",
            )
        })
    # Configure CORS on all routes.
    for route in list(appasync.router.routes()):
        cors.add(route)

    pagename='webrtcapi.html'
    if opt.transport=='rtmp':
        pagename='echoapi.html'
    elif opt.transport=='rtcpush':
        pagename='rtcpushapi.html'
    logger.info('start http server; http://<serverip>:'+str(opt.listenport)+'/'+pagename)
    def run_server(runner):
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        loop.run_until_complete(runner.setup())
        site = web.TCPSite(runner, '0.0.0.0', opt.listenport)
        loop.run_until_complete(site.start())
        if opt.transport=='rtcpush':
            for k in range(opt.max_session):
                push_url = opt.push_url
                if k!=0:
                    push_url = opt.push_url+str(k)
                loop.run_until_complete(run(push_url,k))
        loop.run_forever()    
    #Thread(target=run_server, args=(web.AppRunner(appasync),)).start()
    run_server(web.AppRunner(appasync))

    #app.on_shutdown.append(on_shutdown)
    #app.router.add_post("/offer", offer)

    # print('start websocket server')
    # server = pywsgi.WSGIServer(('0.0.0.0', 8000), app, handler_class=WebSocketHandler)
    # server.serve_forever()