wav2lip_v2.py 10.6 KB
import torch
from torch import nn
from torch.nn import functional as F
import pdb
from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d


class Wav2Lip(nn.Module):
    def __init__(self):
        super(Wav2Lip, self).__init__()

        self.face_encoder_blocks = nn.ModuleList([
            nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3)),

            nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
                          Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)),

            nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
                          Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)),

            nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
                          Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)),

            nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
                          Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)),

            nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
                          Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),

            nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
                          Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),

            nn.Sequential(Conv2d(512, 512, kernel_size=4, stride=1, padding=0),
                          Conv2d(512, 512, kernel_size=1, stride=1, padding=0)), ])

        self.audio_encoder = nn.Sequential(
            Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
            Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
            Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
            Conv2d(512, 512, kernel_size=1, stride=1, padding=0), )

        self.face_decoder_blocks = nn.ModuleList([
            nn.Sequential(Conv2d(512, 512, kernel_size=1, stride=1, padding=0), ),

            nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=4, stride=1, padding=0),
                          Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),

            nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
                          Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),

            nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
                          Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),

            nn.Sequential(Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
                          Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True), ),

            nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
                          Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), ),

            nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
                          Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), ),

            nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
                          Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
                          Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), ), ])

        self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
                                          nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
                                          nn.Sigmoid())
        
    def audio_forward(self, audio_sequences, a_alpha=1.):
        audio_embedding = self.audio_encoder(audio_sequences)  # B, 512, 1, 1
        if a_alpha != 1.:
            audio_embedding *= a_alpha
        return audio_embedding
    
    def inference(self, audio_embedding, face_sequences):
        feats = []
        x = face_sequences
        for f in self.face_encoder_blocks:
            x = f(x)
            feats.append(x)

        x = audio_embedding
        for f in self.face_decoder_blocks:
            x = f(x)
            try:
                x = torch.cat((x, feats[-1]), dim=1)
            except Exception as e:
                print(x.size())
                print(feats[-1].size())
                raise e

            feats.pop()

        x = self.output_block(x)
        outputs = x

        return outputs

    def forward(self, audio_sequences, face_sequences, a_alpha=1.):
        # audio_sequences = (B, T, 1, 80, 16)
        B = audio_sequences.size(0)

        input_dim_size = len(face_sequences.size())
        if input_dim_size > 4:
            audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)#[bz, 5, 1, 80, 16]->[bz*5, 1, 80, 16]
            face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)#[bz, 6, 5, 256, 256]->[bz*5, 6, 256, 256]

        audio_embedding = self.audio_encoder(audio_sequences)  # [bz*5, 1, 80, 16]->[bz*5, 512, 1, 1]
        if a_alpha != 1.:
            audio_embedding *= a_alpha                         #放大音频强度

        feats = []
        x = face_sequences
        for f in self.face_encoder_blocks:
            x = f(x)
            feats.append(x)

        x = audio_embedding
        for f in self.face_decoder_blocks:
            x = f(x)
            try:
                x = torch.cat((x, feats[-1]), dim=1)
            except Exception as e:
                print(x.size())
                print(feats[-1].size())
                raise e

            feats.pop()

        x = self.output_block(x)                              #[bz*5, 80, 256, 256]->[bz*5, 3, 256, 256]

        if input_dim_size > 4:                                #[bz*5, 3, 256, 256]->[B, 3, 5, 256, 256]
            x = torch.split(x, B, dim=0)   
            outputs = torch.stack(x, dim=2)   

        else:
            outputs = x

        return outputs


class Wav2Lip_disc_qual(nn.Module):
    def __init__(self):
        super(Wav2Lip_disc_qual, self).__init__()

        self.face_encoder_blocks = nn.ModuleList([
            nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)),

            nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2),
                          nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),

            nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2),
                          nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),

            nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2),
                          nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),

            nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
                          nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),

            nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
                          nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1), ),

            nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
                          nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1), ),

            nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=4, stride=1, padding=0),
                          nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)), ])

        self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
        self.label_noise = .0

    def get_lower_half(self, face_sequences):                      #取得输入图片的下半部分。
        return face_sequences[:, :, face_sequences.size(2) // 2:]

    def to_2d(self, face_sequences):                               #将输入的图片序列连接起来,形成一个二维的tensor。
        B = face_sequences.size(0)
        face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
        return face_sequences

    def perceptual_forward(self, false_face_sequences):            #前传生成图像
        false_face_sequences = self.to_2d(false_face_sequences)    #[bz, 3, 5, 256, 256]->[bz*5, 3, 256, 256]
        false_face_sequences = self.get_lower_half(false_face_sequences)#[bz*5, 3, 256, 256]->[bz*5, 3, 128, 256]

        false_feats = false_face_sequences
        for f in self.face_encoder_blocks:                         #[bz*5, 3, 128, 256]->[bz*5, 512, 1, 1]
            false_feats = f(false_feats)

        return self.binary_pred(false_feats).view(len(false_feats), -1) #[bz*5, 512, 1, 1]->[bz*5, 1, 1]

    def forward(self, face_sequences):                             #前传真值图像
        face_sequences = self.to_2d(face_sequences)
        face_sequences = self.get_lower_half(face_sequences)

        x = face_sequences
        for f in self.face_encoder_blocks:
            x = f(x)

        return self.binary_pred(x).view(len(x), -1)