asr.py 14.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
import time
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCTC, AutoProcessor

import pyaudio
import soundfile as sf
import resampy

from queue import Queue
from threading import Thread, Event


def _read_frame(stream, exit_event, queue, chunk):

    while True:
        if exit_event.is_set():
            print(f'[INFO] read frame thread ends')
            break
        frame = stream.read(chunk, exception_on_overflow=False)
        frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk]
        queue.put(frame)

def _play_frame(stream, exit_event, queue, chunk):

    while True:
        if exit_event.is_set():
            print(f'[INFO] play frame thread ends')
            break
        frame = queue.get()
        frame = (frame * 32767).astype(np.int16).tobytes()
        stream.write(frame, chunk)

class ASR:
    def __init__(self, opt):

        self.opt = opt

        self.play = opt.asr_play

        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.fps = opt.fps # 20 ms per frame
        self.sample_rate = 16000
        self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
        self.mode = 'live' if opt.asr_wav == '' else 'file'

        if 'esperanto' in self.opt.asr_model:
            self.audio_dim = 44
        elif 'deepspeech' in self.opt.asr_model:
            self.audio_dim = 29
        else:
            self.audio_dim = 32

        # prepare context cache
        # each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms
        self.context_size = opt.m
        self.stride_left_size = opt.l
        self.stride_right_size = opt.r
        self.text = '[START]\n'
        self.terminated = False
        self.frames = []

        # pad left frames
        if self.stride_left_size > 0:
            self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size)


        self.exit_event = Event()
        self.audio_instance = pyaudio.PyAudio()

        # create input stream
        if self.mode == 'file':
            self.file_stream = self.create_file_stream()
        else:
            # start a background process to read frames
            self.input_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, output=False, frames_per_buffer=self.chunk)
            self.queue = Queue()
            self.process_read_frame = Thread(target=_read_frame, args=(self.input_stream, self.exit_event, self.queue, self.chunk))
        
        # play out the audio too...?
        if self.play:
            self.output_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=False, output=True, frames_per_buffer=self.chunk)
            self.output_queue = Queue()
            self.process_play_frame = Thread(target=_play_frame, args=(self.output_stream, self.exit_event, self.output_queue, self.chunk))

        # current location of audio
        self.idx = 0

        # create wav2vec model
        print(f'[INFO] loading ASR model {self.opt.asr_model}...')
        self.processor = AutoProcessor.from_pretrained(opt.asr_model)
        self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device)

        # prepare to save logits
        if self.opt.asr_save_feats:
            self.all_feats = []

        # the extracted features 
        # use a loop queue to efficiently record endless features: [f--t---][-------][-------]
        self.feat_buffer_size = 4
        self.feat_buffer_idx = 0
        self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32, device=self.device)

        # TODO: hard coded 16 and 8 window size...
        self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
        self.tail = 8
        # attention window...
        self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding...

        # warm up steps needed: mid + right + window_size + attention_size
        self.warm_up_steps = self.context_size + self.stride_right_size + 8 + 2 * 3

        self.listening = False
        self.playing = False

    def listen(self):
        # start
        if self.mode == 'live' and not self.listening:
            print(f'[INFO] starting read frame thread...')
            self.process_read_frame.start()
            self.listening = True
        
        if self.play and not self.playing:
            print(f'[INFO] starting play frame thread...')
            self.process_play_frame.start()
            self.playing = True

    def stop(self):

        self.exit_event.set()

        if self.play:
            self.output_stream.stop_stream()
            self.output_stream.close()
            if self.playing:
                self.process_play_frame.join()
                self.playing = False

        if self.mode == 'live':
            self.input_stream.stop_stream()
            self.input_stream.close()
            if self.listening:
                self.process_read_frame.join()
                self.listening = False


    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        
        self.stop()

        if self.mode == 'live':
            # live mode: also print the result text.        
            self.text += '\n[END]'
            print(self.text)

    def get_next_feat(self):
        # return a [1/8, 16] window, for the next input to nerf side.
        
        while len(self.att_feats) < 8:
            # [------f+++t-----]
            if self.front < self.tail:
                feat = self.feat_queue[self.front:self.tail]
            # [++t-----------f+]
            else:
                feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)

            self.front = (self.front + 2) % self.feat_queue.shape[0]
            self.tail = (self.tail + 2) % self.feat_queue.shape[0]

            # print(self.front, self.tail, feat.shape)

            self.att_feats.append(feat.permute(1, 0))
        
        att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]

        # discard old
        self.att_feats = self.att_feats[1:]

        return att_feat

    def run_step(self):

        if self.terminated:
            return

        # get a frame of audio
        frame = self.get_audio_frame()
        
        # the last frame
        if frame is None:
            # terminate, but always run the network for the left frames
            self.terminated = True
        else:
            self.frames.append(frame)
            # put to output
            if self.play:
                self.output_queue.put(frame)
            # context not enough, do not run network.
            if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size:
                return
        
        inputs = np.concatenate(self.frames) # [N * chunk]

        # discard the old part to save memory
        if not self.terminated:
            self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]

        logits, labels, text = self.frame_to_text(inputs)
        feats = logits # better lips-sync than labels

        # save feats
        if self.opt.asr_save_feats:
            self.all_feats.append(feats)

        # record the feats efficiently.. (no concat, constant memory)
        start = self.feat_buffer_idx * self.context_size
        end = start + feats.shape[0]
        self.feat_queue[start:end] = feats
        self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size

        # very naive, just concat the text output.
        if text != '':
            self.text = self.text + ' ' + text

        # will only run once at ternimation
        if self.terminated:
            self.text += '\n[END]'
            print(self.text)
            if self.opt.asr_save_feats:
                print(f'[INFO] save all feats for training purpose... ')
                feats = torch.cat(self.all_feats, dim=0) # [N, C]
                # print('[INFO] before unfold', feats.shape)
                window_size = 16
                padding = window_size // 2
                feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M]
                feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1]
                unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0), stride=(2, 1)) # [1, C * window_size, M / 2 + 1]
                unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1, 0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C]
                # print('[INFO] after unfold', unfold_feats.shape)
                # save to a npy file
                if 'esperanto' in self.opt.asr_model:
                    output_path = self.opt.asr_wav.replace('.wav', '_eo.npy')
                else:
                    output_path = self.opt.asr_wav.replace('.wav', '.npy')
                np.save(output_path, unfold_feats.cpu().numpy())
                print(f"[INFO] saved logits to {output_path}")
    
    def create_file_stream(self):
    
        stream, sample_rate = sf.read(self.opt.asr_wav) # [T*sample_rate,] float64
        stream = stream.astype(np.float32)

        if stream.ndim > 1:
            print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
            stream = stream[:, 0]
    
        if sample_rate != self.sample_rate:
            print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
            stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)

        print(f'[INFO] loaded audio stream {self.opt.asr_wav}: {stream.shape}')

        return stream


    def create_pyaudio_stream(self):

        import pyaudio

        print(f'[INFO] creating live audio stream ...')

        audio = pyaudio.PyAudio()
        
        # get devices
        info = audio.get_host_api_info_by_index(0)
        n_devices = info.get('deviceCount')

        for i in range(0, n_devices):
            if (audio.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0:
                name = audio.get_device_info_by_host_api_device_index(0, i).get('name')
                print(f'[INFO] choose audio device {name}, id {i}')
                break
        
        # get stream
        stream = audio.open(input_device_index=i,
                            format=pyaudio.paInt16,
                            channels=1,
                            rate=self.sample_rate,
                            input=True,
                            frames_per_buffer=self.chunk)
        
        return audio, stream

    
    def get_audio_frame(self):

        if self.mode == 'file':

            if self.idx < self.file_stream.shape[0]:
                frame = self.file_stream[self.idx: self.idx + self.chunk]
                self.idx = self.idx + self.chunk
                return frame
            else:
                return None
        
        else:

            frame = self.queue.get()
            # print(f'[INFO] get frame {frame.shape}')

            self.idx = self.idx + self.chunk

            return frame

        
    def frame_to_text(self, frame):
        # frame: [N * 320], N = (context_size + 2 * stride_size)
        
        inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
        
        with torch.no_grad():
            result = self.model(inputs.input_values.to(self.device))
            logits = result.logits # [1, N - 1, 32]
        
        # cut off stride
        left = max(0, self.stride_left_size)
        right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.

        # do not cut right if terminated.
        if self.terminated:
            right = logits.shape[1]

        logits = logits[:, left:right]

        # print(frame.shape, inputs.input_values.shape, logits.shape)
    
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = self.processor.batch_decode(predicted_ids)[0].lower()

        
        # for esperanto
        # labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '‘', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '–', 'fi', 'l', 'p', '’', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])

        # labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
        # print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
        # print(predicted_ids[0])
        # print(transcription)

        return logits[0], predicted_ids[0], transcription # [N,]


    def run(self):

        self.listen()

        while not self.terminated:
            self.run_step()

    def clear_queue(self):
        # clear the queue, to reduce potential latency...
        print(f'[INFO] clear queue')
        if self.mode == 'live':
            self.queue.queue.clear()
        if self.play:
            self.output_queue.queue.clear()

    def warm_up(self):

        self.listen()
        
        print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
        t = time.time()
        for _ in range(self.warm_up_steps):
            self.run_step()
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        t = time.time() - t
        print(f'[INFO] warm-up done, actual latency = {t:.6f}s')

        self.clear_queue()

            


if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--wav', type=str, default='')
    parser.add_argument('--play', action='store_true', help="play out the audio")
    
    parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
    # parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')

    parser.add_argument('--save_feats', action='store_true')
    # audio FPS
    parser.add_argument('--fps', type=int, default=50)
    # sliding window left-middle-right length.
    parser.add_argument('-l', type=int, default=10)
    parser.add_argument('-m', type=int, default=50)
    parser.add_argument('-r', type=int, default=10)
    
    opt = parser.parse_args()

    # fix
    opt.asr_wav = opt.wav
    opt.asr_play = opt.play
    opt.asr_model = opt.model
    opt.asr_save_feats = opt.save_feats

    if 'deepspeech' in opt.asr_model:
        raise ValueError("DeepSpeech features should not use this code to extract...")

    with ASR(opt) as asr:
        asr.run()