provider.py
31 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
import os
import cv2
import glob
import json
import tqdm
import numpy as np
from scipy.spatial.transform import Slerp, Rotation
import matplotlib.pyplot as plt
import trimesh
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from .utils import get_audio_features, get_rays, get_bg_coords, convert_poses
# ref: https://github.com/NVlabs/instant-ngp/blob/b76004c8cf478880227401ae763be4c02f80b62f/include/neural-graphics-primitives/nerf_loader.h#L50
def nerf_matrix_to_ngp(pose, scale=0.33, offset=[0, 0, 0]):
new_pose = np.array([
[pose[1, 0], -pose[1, 1], -pose[1, 2], pose[1, 3] * scale + offset[0]],
[pose[2, 0], -pose[2, 1], -pose[2, 2], pose[2, 3] * scale + offset[1]],
[pose[0, 0], -pose[0, 1], -pose[0, 2], pose[0, 3] * scale + offset[2]],
[0, 0, 0, 1],
], dtype=np.float32)
return new_pose
def smooth_camera_path(poses, kernel_size=5):
# smooth the camera trajectory...
# poses: [N, 4, 4], numpy array
N = poses.shape[0]
K = kernel_size // 2
trans = poses[:, :3, 3].copy() # [N, 3]
rots = poses[:, :3, :3].copy() # [N, 3, 3]
for i in range(N):
start = max(0, i - K)
end = min(N, i + K + 1)
poses[i, :3, 3] = trans[start:end].mean(0)
poses[i, :3, :3] = Rotation.from_matrix(rots[start:end]).mean().as_matrix()
return poses
def polygon_area(x, y):
x_ = x - x.mean()
y_ = y - y.mean()
correction = x_[-1] * y_[0] - y_[-1]* x_[0]
main_area = np.dot(x_[:-1], y_[1:]) - np.dot(y_[:-1], x_[1:])
return 0.5 * np.abs(main_area + correction)
def visualize_poses(poses, size=0.1):
# poses: [B, 4, 4]
print(f'[INFO] visualize poses: {poses.shape}')
axes = trimesh.creation.axis(axis_length=4)
box = trimesh.primitives.Box(extents=(2, 2, 2)).as_outline()
box.colors = np.array([[128, 128, 128]] * len(box.entities))
objects = [axes, box]
for pose in poses:
# a camera is visualized with 8 line segments.
pos = pose[:3, 3]
a = pos + size * pose[:3, 0] + size * pose[:3, 1] + size * pose[:3, 2]
b = pos - size * pose[:3, 0] + size * pose[:3, 1] + size * pose[:3, 2]
c = pos - size * pose[:3, 0] - size * pose[:3, 1] + size * pose[:3, 2]
d = pos + size * pose[:3, 0] - size * pose[:3, 1] + size * pose[:3, 2]
dir = (a + b + c + d) / 4 - pos
dir = dir / (np.linalg.norm(dir) + 1e-8)
o = pos + dir * 3
segs = np.array([[pos, a], [pos, b], [pos, c], [pos, d], [a, b], [b, c], [c, d], [d, a], [pos, o]])
segs = trimesh.load_path(segs)
objects.append(segs)
trimesh.Scene(objects).show()
class NeRFDataset_Test:
def __init__(self, opt, device, downscale=1):
super().__init__()
self.opt = opt
self.device = device
self.downscale = downscale
self.scale = opt.scale # camera radius scale to make sure camera are inside the bounding box.
self.offset = opt.offset # camera offset
self.bound = opt.bound # bounding box half length, also used as the radius to random sample poses.
self.fp16 = opt.fp16
self.start_index = opt.data_range[0]
self.end_index = opt.data_range[1]
self.training = False
self.num_rays = -1
self.preload = opt.preload # 0 = disk, 1 = cpu, 2 = gpu
# load nerf-compatible format data.
with open(opt.pose, 'r') as f:
transform = json.load(f)
# load image size
self.H = int(transform['cy']) * 2 // downscale
self.W = int(transform['cx']) * 2 // downscale
# read images
frames = transform["frames"]
# use a slice of the dataset
if self.end_index == -1: # abuse...
self.end_index = len(frames)
frames = frames[self.start_index:self.end_index]
print(f'[INFO] load {len(frames)} frames.')
# only load pre-calculated aud features when not live-streaming
if not self.opt.asr:
aud_features = np.load(self.opt.aud)
aud_features = torch.from_numpy(aud_features)
# support both [N, 16] labels and [N, 16, K] logits
if len(aud_features.shape) == 3:
aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16]
if self.opt.emb:
print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode')
aud_features = aud_features.argmax(1) # [N, 16]
else:
assert self.opt.emb, "aud only provide labels, must use --emb"
aud_features = aud_features.long()
print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}')
# load action units
import pandas as pd
au_blink_info=pd.read_csv(self.opt.au)
au_blink = au_blink_info[' AU45_r'].values
self.poses = []
self.auds = []
self.eye_area = []
self.torso_img = []
for f in tqdm.tqdm(frames, desc=f'Loading data'):
pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4]
pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset)
self.poses.append(pose)
# find the corresponding audio to the image frame
if not self.opt.asr and self.opt.aud == '':
aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame...
self.auds.append(aud)
if self.opt.exp_eye:
# if 'eye_ratio' in f:
# area = f['eye_ratio']
# else:
# area = 0.25 # default value for opened eye
# action units blink AU45
area = au_blink[f['img_id']]
area = np.clip(area, 0, 2) / 2
# area = area + np.random.rand() / 10
self.eye_area.append(area)
# load frame-wise bg
if self.opt.torso_imgs!='':
torso_img_path = os.path.join(self.opt.torso_imgs, str(f['img_id']) + '.png')
if self.preload > 0:
torso_img = cv2.imread(torso_img_path, cv2.IMREAD_UNCHANGED) # [H, W, 4]
torso_img = cv2.cvtColor(torso_img, cv2.COLOR_BGRA2RGBA)
torso_img = torso_img.astype(np.float32) / 255 # [H, W, 3/4]
self.torso_img.append(torso_img)
else:
self.torso_img.append(torso_img_path)
if self.opt.torso_imgs!='':
if self.preload > 0:
self.torso_img = torch.from_numpy(np.stack(self.torso_img, axis=0)) # [N, H, W, C]
else:
self.torso_img = np.array(self.torso_img)
if self.preload > 1: #gpu
self.torso_img = self.torso_img.to(torch.half).to(self.device)
# load pre-extracted background image (should be the same size as training image...)
if self.opt.bg_img == 'white': # special
bg_img = np.ones((self.H, self.W, 3), dtype=np.float32)
elif self.opt.bg_img == 'black': # special
bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32)
else: # load from file
bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3]
if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W:
bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA)
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4]
self.bg_img = bg_img
self.poses = np.stack(self.poses, axis=0)
# smooth camera path...
if self.opt.smooth_path:
self.poses = smooth_camera_path(self.poses, self.opt.smooth_path_window)
self.poses = torch.from_numpy(self.poses) # [N, 4, 4]
if self.opt.asr:
# live streaming, no pre-calculated auds
self.auds = None
else:
# auds corresponding to images
if self.opt.aud == '':
self.auds = torch.stack(self.auds, dim=0) # [N, 32, 16]
# auds is novel, may have a different length with images
else:
self.auds = aud_features
self.bg_img = torch.from_numpy(self.bg_img)
if self.preload > 1 or self.opt.torso_imgs=='': #gpu
self.bg_img = self.bg_img.to(torch.half).to(self.device)
if self.opt.exp_eye:
self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N]
print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}')
if self.opt.smooth_eye:
# naive 5 window average
ori_eye = self.eye_area.copy()
for i in range(ori_eye.shape[0]):
start = max(0, i - 1)
end = min(ori_eye.shape[0], i + 2)
self.eye_area[i] = ori_eye[start:end].mean()
self.eye_area = torch.from_numpy(self.eye_area).view(-1, 1) # [N, 1]
# always preload
self.poses = self.poses.to(self.device)
if self.auds is not None:
self.auds = self.auds.to(self.device)
if self.opt.exp_eye:
self.eye_area = self.eye_area.to(self.device)
# load intrinsics
fl_x = fl_y = transform['focal_len']
cx = (transform['cx'] / downscale)
cy = (transform['cy'] / downscale)
self.intrinsics = np.array([fl_x, fl_y, cx, cy])
# directly build the coordinate meshgrid in [-1, 1]^2
self.bg_coords = get_bg_coords(self.H, self.W, self.device) # [1, H*W, 2] in [-1, 1]
def mirror_index(self, index):
size = self.poses.shape[0]
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def collate(self, index):
B = len(index) # a list of length 1
# assert B == 1
results = {}
# audio use the original index
if self.auds is not None:
auds = get_audio_features(self.auds, self.opt.att, index[0]).to(self.device)
results['auds'] = auds
# head pose and bg image may mirror (replay --> <-- --> <--).
index[0] = self.mirror_index(index[0])
poses = self.poses[index].to(self.device) # [B, 4, 4]
rays = get_rays(poses, self.intrinsics, self.H, self.W, self.num_rays, self.opt.patch_size)
results['index'] = index # for ind. code
results['H'] = self.H
results['W'] = self.W
results['rays_o'] = rays['rays_o']
results['rays_d'] = rays['rays_d']
if self.opt.exp_eye:
results['eye'] = self.eye_area[index].to(self.device) # [1]
else:
results['eye'] = None
# load bg
if self.opt.torso_imgs!='':
bg_torso_img = self.torso_img[index]
if self.preload == 0: # on the fly loading
bg_torso_img = cv2.imread(bg_torso_img[0], cv2.IMREAD_UNCHANGED) # [H, W, 4]
bg_torso_img = cv2.cvtColor(bg_torso_img, cv2.COLOR_BGRA2RGBA)
bg_torso_img = bg_torso_img.astype(np.float32) / 255 # [H, W, 3/4]
bg_torso_img = torch.from_numpy(bg_torso_img).unsqueeze(0)
bg_torso_img = bg_torso_img[..., :3] * bg_torso_img[..., 3:] + self.bg_img * (1 - bg_torso_img[..., 3:])
bg_torso_img = bg_torso_img.view(B, -1, 3).to(self.device)
if not self.opt.torso:
bg_img = bg_torso_img
else:
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
else:
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
results['bg_color'] = bg_img
bg_coords = self.bg_coords # [1, N, 2]
results['bg_coords'] = bg_coords
# results['poses'] = convert_poses(poses) # [B, 6]
# results['poses_matrix'] = poses # [B, 4, 4]
results['poses'] = poses # [B, 4, 4]
return results
def dataloader(self):
# test with novel auds, then use its length
if self.auds is not None:
size = self.auds.shape[0]
# live stream test, use 2 * len(poses), so it naturally mirrors.
else:
size = 2 * self.poses.shape[0]
loader = DataLoader(list(range(size)), batch_size=1, collate_fn=self.collate, shuffle=False, num_workers=0)
loader._data = self # an ugly fix... we need poses in trainer.
# do evaluate if has gt images and use self-driven setting
loader.has_gt = False
return loader
class NeRFDataset:
def __init__(self, opt, device, type='train', downscale=1):
super().__init__()
self.opt = opt
self.device = device
self.type = type # train, val, test
self.downscale = downscale
self.root_path = opt.path
self.preload = opt.preload # 0 = disk, 1 = cpu, 2 = gpu
self.scale = opt.scale # camera radius scale to make sure camera are inside the bounding box.
self.offset = opt.offset # camera offset
self.bound = opt.bound # bounding box half length, also used as the radius to random sample poses.
self.fp16 = opt.fp16
self.start_index = opt.data_range[0]
self.end_index = opt.data_range[1]
self.training = self.type in ['train', 'all', 'trainval']
self.num_rays = self.opt.num_rays if self.training else -1
# load nerf-compatible format data.
# load all splits (train/valid/test)
if type == 'all':
transform_paths = glob.glob(os.path.join(self.root_path, '*.json'))
transform = None
for transform_path in transform_paths:
with open(transform_path, 'r') as f:
tmp_transform = json.load(f)
if transform is None:
transform = tmp_transform
else:
transform['frames'].extend(tmp_transform['frames'])
# load train and val split
elif type == 'trainval':
with open(os.path.join(self.root_path, f'transforms_train.json'), 'r') as f:
transform = json.load(f)
with open(os.path.join(self.root_path, f'transforms_val.json'), 'r') as f:
transform_val = json.load(f)
transform['frames'].extend(transform_val['frames'])
# only load one specified split
else:
# no test, use val as test
_split = 'val' if type == 'test' else type
with open(os.path.join(self.root_path, f'transforms_{_split}.json'), 'r') as f:
transform = json.load(f)
# load image size
if 'h' in transform and 'w' in transform:
self.H = int(transform['h']) // downscale
self.W = int(transform['w']) // downscale
else:
self.H = int(transform['cy']) * 2 // downscale
self.W = int(transform['cx']) * 2 // downscale
# read images
frames = transform["frames"]
# use a slice of the dataset
if self.end_index == -1: # abuse...
self.end_index = len(frames)
frames = frames[self.start_index:self.end_index]
print(f'[INFO] load {len(frames)} {type} frames.')
# only load pre-calculated aud features when not live-streaming
if not self.opt.asr:
# empty means the default self-driven extracted features.
if self.opt.aud == '':
if 'esperanto' in self.opt.asr_model:
aud_features = np.load(os.path.join(self.root_path, 'aud_eo.npy'))
elif 'deepspeech' in self.opt.asr_model:
aud_features = np.load(os.path.join(self.root_path, 'aud_ds.npy'))
# elif 'hubert_cn' in self.opt.asr_model:
# aud_features = np.load(os.path.join(self.root_path, 'aud_hu_cn.npy'))
elif 'hubert' in self.opt.asr_model:
aud_features = np.load(os.path.join(self.root_path, 'aud_hu.npy'))
else:
aud_features = np.load(os.path.join(self.root_path, 'aud.npy'))
# cross-driven extracted features.
else:
aud_features = np.load(self.opt.aud)
aud_features = torch.from_numpy(aud_features)
# support both [N, 16] labels and [N, 16, K] logits
if len(aud_features.shape) == 3:
aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16]
if self.opt.emb:
print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode')
aud_features = aud_features.argmax(1) # [N, 16]
else:
assert self.opt.emb, "aud only provide labels, must use --emb"
aud_features = aud_features.long()
print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}')
# load action units
import pandas as pd
au_blink_info=pd.read_csv(os.path.join(self.root_path, 'au.csv'))
au_blink = au_blink_info[' AU45_r'].values
self.torso_img = []
self.images = []
self.poses = []
self.exps = []
self.auds = []
self.face_rect = []
self.lhalf_rect = []
self.lips_rect = []
self.eye_area = []
self.eye_rect = []
for f in tqdm.tqdm(frames, desc=f'Loading {type} data'):
f_path = os.path.join(self.root_path, 'gt_imgs', str(f['img_id']) + '.jpg')
if not os.path.exists(f_path):
print('[WARN]', f_path, 'NOT FOUND!')
continue
pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4]
pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset)
self.poses.append(pose)
if self.preload > 0:
image = cv2.imread(f_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] o [H, W, 4]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image.astype(np.float32) / 255 # [H, W, 3/4]
self.images.append(image)
else:
self.images.append(f_path)
# load frame-wise bg
torso_img_path = os.path.join(self.root_path, 'torso_imgs', str(f['img_id']) + '.png')
if self.preload > 0:
torso_img = cv2.imread(torso_img_path, cv2.IMREAD_UNCHANGED) # [H, W, 4]
torso_img = cv2.cvtColor(torso_img, cv2.COLOR_BGRA2RGBA)
torso_img = torso_img.astype(np.float32) / 255 # [H, W, 3/4]
self.torso_img.append(torso_img)
else:
self.torso_img.append(torso_img_path)
# find the corresponding audio to the image frame
if not self.opt.asr and self.opt.aud == '':
aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame...
self.auds.append(aud)
# load lms and extract face
lms = np.loadtxt(os.path.join(self.root_path, 'ori_imgs', str(f['img_id']) + '.lms')) # [68, 2]
lh_xmin, lh_xmax = int(lms[31:36, 1].min()), int(lms[:, 1].max()) # actually lower half area
xmin, xmax = int(lms[:, 1].min()), int(lms[:, 1].max())
ymin, ymax = int(lms[:, 0].min()), int(lms[:, 0].max())
self.face_rect.append([xmin, xmax, ymin, ymax])
self.lhalf_rect.append([lh_xmin, lh_xmax, ymin, ymax])
if self.opt.exp_eye:
# eyes_left = slice(36, 42)
# eyes_right = slice(42, 48)
# area_left = polygon_area(lms[eyes_left, 0], lms[eyes_left, 1])
# area_right = polygon_area(lms[eyes_right, 0], lms[eyes_right, 1])
# # area percentage of two eyes of the whole image...
# area = (area_left + area_right) / (self.H * self.W) * 100
# action units blink AU45
area = au_blink[f['img_id']]
area = np.clip(area, 0, 2) / 2
# area = area + np.random.rand() / 10
self.eye_area.append(area)
xmin, xmax = int(lms[36:48, 1].min()), int(lms[36:48, 1].max())
ymin, ymax = int(lms[36:48, 0].min()), int(lms[36:48, 0].max())
self.eye_rect.append([xmin, xmax, ymin, ymax])
if self.opt.finetune_lips:
lips = slice(48, 60)
xmin, xmax = int(lms[lips, 1].min()), int(lms[lips, 1].max())
ymin, ymax = int(lms[lips, 0].min()), int(lms[lips, 0].max())
# padding to H == W
cx = (xmin + xmax) // 2
cy = (ymin + ymax) // 2
l = max(xmax - xmin, ymax - ymin) // 2
xmin = max(0, cx - l)
xmax = min(self.H, cx + l)
ymin = max(0, cy - l)
ymax = min(self.W, cy + l)
self.lips_rect.append([xmin, xmax, ymin, ymax])
# load pre-extracted background image (should be the same size as training image...)
if self.opt.bg_img == 'white': # special
bg_img = np.ones((self.H, self.W, 3), dtype=np.float32)
elif self.opt.bg_img == 'black': # special
bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32)
else: # load from file
# default bg
if self.opt.bg_img == '':
self.opt.bg_img = os.path.join(self.root_path, 'bc.jpg')
bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3]
if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W:
bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA)
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4]
self.bg_img = bg_img
self.poses = np.stack(self.poses, axis=0)
# smooth camera path...
if self.opt.smooth_path:
self.poses = smooth_camera_path(self.poses, self.opt.smooth_path_window)
self.poses = torch.from_numpy(self.poses) # [N, 4, 4]
if self.preload > 0:
self.images = torch.from_numpy(np.stack(self.images, axis=0)) # [N, H, W, C]
self.torso_img = torch.from_numpy(np.stack(self.torso_img, axis=0)) # [N, H, W, C]
else:
self.images = np.array(self.images)
self.torso_img = np.array(self.torso_img)
if self.opt.asr:
# live streaming, no pre-calculated auds
self.auds = None
else:
# auds corresponding to images
if self.opt.aud == '':
self.auds = torch.stack(self.auds, dim=0) # [N, 32, 16]
# auds is novel, may have a different length with images
else:
self.auds = aud_features
self.bg_img = torch.from_numpy(self.bg_img)
if self.opt.exp_eye:
self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N]
print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}')
if self.opt.smooth_eye:
# naive 5 window average
ori_eye = self.eye_area.copy()
for i in range(ori_eye.shape[0]):
start = max(0, i - 1)
end = min(ori_eye.shape[0], i + 2)
self.eye_area[i] = ori_eye[start:end].mean()
self.eye_area = torch.from_numpy(self.eye_area).view(-1, 1) # [N, 1]
# calculate mean radius of all camera poses
self.radius = self.poses[:, :3, 3].norm(dim=-1).mean(0).item()
#print(f'[INFO] dataset camera poses: radius = {self.radius:.4f}, bound = {self.bound}')
# [debug] uncomment to view all training poses.
# visualize_poses(self.poses.numpy())
# [debug] uncomment to view examples of randomly generated poses.
# visualize_poses(rand_poses(100, self.device, radius=self.radius).cpu().numpy())
if self.preload > 1:
self.poses = self.poses.to(self.device)
if self.auds is not None:
self.auds = self.auds.to(self.device)
self.bg_img = self.bg_img.to(torch.half).to(self.device)
self.torso_img = self.torso_img.to(torch.half).to(self.device)
self.images = self.images.to(torch.half).to(self.device)
if self.opt.exp_eye:
self.eye_area = self.eye_area.to(self.device)
# load intrinsics
if 'focal_len' in transform:
fl_x = fl_y = transform['focal_len']
elif 'fl_x' in transform or 'fl_y' in transform:
fl_x = (transform['fl_x'] if 'fl_x' in transform else transform['fl_y']) / downscale
fl_y = (transform['fl_y'] if 'fl_y' in transform else transform['fl_x']) / downscale
elif 'camera_angle_x' in transform or 'camera_angle_y' in transform:
# blender, assert in radians. already downscaled since we use H/W
fl_x = self.W / (2 * np.tan(transform['camera_angle_x'] / 2)) if 'camera_angle_x' in transform else None
fl_y = self.H / (2 * np.tan(transform['camera_angle_y'] / 2)) if 'camera_angle_y' in transform else None
if fl_x is None: fl_x = fl_y
if fl_y is None: fl_y = fl_x
else:
raise RuntimeError('Failed to load focal length, please check the transforms.json!')
cx = (transform['cx'] / downscale) if 'cx' in transform else (self.W / 2)
cy = (transform['cy'] / downscale) if 'cy' in transform else (self.H / 2)
self.intrinsics = np.array([fl_x, fl_y, cx, cy])
# directly build the coordinate meshgrid in [-1, 1]^2
self.bg_coords = get_bg_coords(self.H, self.W, self.device) # [1, H*W, 2] in [-1, 1]
def mirror_index(self, index):
size = self.poses.shape[0]
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def collate(self, index):
B = len(index) # a list of length 1
# assert B == 1
results = {}
# audio use the original index
if self.auds is not None:
auds = get_audio_features(self.auds, self.opt.att, index[0]).to(self.device)
results['auds'] = auds
# head pose and bg image may mirror (replay --> <-- --> <--).
index[0] = self.mirror_index(index[0])
poses = self.poses[index].to(self.device) # [B, 4, 4]
if self.training and self.opt.finetune_lips:
rect = self.lips_rect[index[0]]
results['rect'] = rect
rays = get_rays(poses, self.intrinsics, self.H, self.W, -1, rect=rect)
else:
rays = get_rays(poses, self.intrinsics, self.H, self.W, self.num_rays, self.opt.patch_size)
results['index'] = index # for ind. code
results['H'] = self.H
results['W'] = self.W
results['rays_o'] = rays['rays_o']
results['rays_d'] = rays['rays_d']
# get a mask for rays inside rect_face
if self.training:
xmin, xmax, ymin, ymax = self.face_rect[index[0]]
face_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
results['face_mask'] = face_mask
xmin, xmax, ymin, ymax = self.lhalf_rect[index[0]]
lhalf_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
results['lhalf_mask'] = lhalf_mask
if self.opt.exp_eye:
results['eye'] = self.eye_area[index].to(self.device) # [1]
if self.training:
results['eye'] += (np.random.rand()-0.5) / 10
xmin, xmax, ymin, ymax = self.eye_rect[index[0]]
eye_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
results['eye_mask'] = eye_mask
else:
results['eye'] = None
# load bg
bg_torso_img = self.torso_img[index]
if self.preload == 0: # on the fly loading
bg_torso_img = cv2.imread(bg_torso_img[0], cv2.IMREAD_UNCHANGED) # [H, W, 4]
bg_torso_img = cv2.cvtColor(bg_torso_img, cv2.COLOR_BGRA2RGBA)
bg_torso_img = bg_torso_img.astype(np.float32) / 255 # [H, W, 3/4]
bg_torso_img = torch.from_numpy(bg_torso_img).unsqueeze(0)
bg_torso_img = bg_torso_img[..., :3] * bg_torso_img[..., 3:] + self.bg_img * (1 - bg_torso_img[..., 3:])
bg_torso_img = bg_torso_img.view(B, -1, 3).to(self.device)
if not self.opt.torso:
bg_img = bg_torso_img
else:
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
if self.training:
bg_img = torch.gather(bg_img, 1, torch.stack(3 * [rays['inds']], -1)) # [B, N, 3]
results['bg_color'] = bg_img
if self.opt.torso and self.training:
bg_torso_img = torch.gather(bg_torso_img, 1, torch.stack(3 * [rays['inds']], -1)) # [B, N, 3]
results['bg_torso_color'] = bg_torso_img
images = self.images[index] # [B, H, W, 3/4]
if self.preload == 0:
images = cv2.imread(images[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
images = cv2.cvtColor(images, cv2.COLOR_BGR2RGB)
images = images.astype(np.float32) / 255 # [H, W, 3]
images = torch.from_numpy(images).unsqueeze(0)
images = images.to(self.device)
if self.training:
C = images.shape[-1]
images = torch.gather(images.view(B, -1, C), 1, torch.stack(C * [rays['inds']], -1)) # [B, N, 3/4]
results['images'] = images
if self.training:
bg_coords = torch.gather(self.bg_coords, 1, torch.stack(2 * [rays['inds']], -1)) # [1, N, 2]
else:
bg_coords = self.bg_coords # [1, N, 2]
results['bg_coords'] = bg_coords
# results['poses'] = convert_poses(poses) # [B, 6]
# results['poses_matrix'] = poses # [B, 4, 4]
results['poses'] = poses # [B, 4, 4]
return results
def dataloader(self):
if self.training:
# training len(poses) == len(auds)
size = self.poses.shape[0]
else:
# test with novel auds, then use its length
if self.auds is not None:
size = self.auds.shape[0]
# live stream test, use 2 * len(poses), so it naturally mirrors.
else:
size = 2 * self.poses.shape[0]
loader = DataLoader(list(range(size)), batch_size=1, collate_fn=self.collate, shuffle=self.training, num_workers=0)
loader._data = self # an ugly fix... we need poses in trainer.
# do evaluate if has gt images and use self-driven setting
loader.has_gt = (self.opt.aud == '')
return loader