api.py
6.82 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import os
import torch
from torch.utils.model_zoo import load_url
from enum import Enum
import numpy as np
import cv2
from .detection.core import FaceDetector
try:
import urllib.request as request_file
except ImportError:
import urllib as request_file
try:
import dlib
except ImportError:
dlib = None
from .models import FAN, ResNetDepth
from .utils import *
class LandmarksType(Enum):
"""Enum class defining the type of landmarks to detect.
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
``_2halfD`` - this points represent the projection of the 3D points into 3D
``_3D`` - detect the points ``(x,y,z)``` in a 3D space
"""
_2D = 1
_2halfD = 2
_3D = 3
class ImageStyle(Enum):
"""Enum class defining different image styles for face detection optimization.
``REALISTIC`` - Real human faces, standard detection parameters
``ANIME`` - Anime/cartoon style faces, optimized for 2D illustrations
``ANCIENT`` - Ancient/traditional art style, enhanced for classical paintings
``AUTO`` - Automatic style detection based on image characteristics
"""
REALISTIC = 1
ANIME = 2
ANCIENT = 3
AUTO = 4
class NetworkSize(Enum):
# TINY = 1
# SMALL = 2
# MEDIUM = 3
LARGE = 4
def __new__(cls, value):
member = object.__new__(cls)
member._value_ = value
return member
def __int__(self):
return self.value
ROOT = os.path.dirname(os.path.abspath(__file__))
def detect_image_style(image):
"""Automatically detect image style based on visual characteristics.
Args:
image: Input image as numpy array
Returns:
ImageStyle: Detected style enum
"""
# Convert to grayscale for analysis
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# Calculate edge density (anime/cartoon images typically have more defined edges)
edges = cv2.Canny(gray, 50, 150)
edge_density = np.sum(edges > 0) / (edges.shape[0] * edges.shape[1])
# Calculate color saturation (anime images often have higher saturation)
if len(image.shape) == 3:
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
saturation_mean = np.mean(hsv[:, :, 1])
else:
saturation_mean = 0
# Calculate texture complexity
laplacian_var = cv2.Laplacian(gray, cv2.CV_64F).var()
# Style classification logic
if edge_density > 0.15 and saturation_mean > 100:
return ImageStyle.ANIME
elif laplacian_var < 100 and saturation_mean < 80:
return ImageStyle.ANCIENT
else:
return ImageStyle.REALISTIC
class FaceAlignment:
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
device='cuda', flip_input=False, face_detector='sfd', verbose=False,
image_style=ImageStyle.AUTO, confidence_threshold=None):
self.device = device
self.flip_input = flip_input
self.landmarks_type = landmarks_type
self.verbose = verbose
self.image_style = image_style
# Style-specific confidence thresholds
self.style_thresholds = {
ImageStyle.REALISTIC: 0.5,
ImageStyle.ANIME: 0.3, # Lower threshold for anime faces
ImageStyle.ANCIENT: 0.25, # Even lower for ancient art
ImageStyle.AUTO: 0.4 # Balanced default
}
self.confidence_threshold = confidence_threshold or self.style_thresholds.get(image_style, 0.4)
network_size = int(network_size)
if 'cuda' in device:
torch.backends.cudnn.benchmark = True
# Get the face detector
face_detector_module = __import__('face_detection.detection.' + face_detector,
globals(), locals(), [face_detector], 0)
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)
def preprocess_image_by_style(self, image, style):
"""Apply style-specific preprocessing to improve detection.
Args:
image: Input image
style: ImageStyle enum
Returns:
Preprocessed image
"""
processed = image.copy()
if style == ImageStyle.ANIME:
# Enhance edges for anime/cartoon faces
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
processed = cv2.filter2D(processed, -1, kernel)
# Increase contrast
processed = cv2.convertScaleAbs(processed, alpha=1.2, beta=10)
elif style == ImageStyle.ANCIENT:
# Enhance contrast and reduce noise for ancient art
processed = cv2.convertScaleAbs(processed, alpha=1.3, beta=15)
# Apply slight gaussian blur to reduce texture noise
processed = cv2.GaussianBlur(processed, (3, 3), 0.5)
return processed
def get_detections_for_batch(self, images):
# Auto-detect style if needed
if self.image_style == ImageStyle.AUTO and len(images) > 0:
detected_style = detect_image_style(images[0])
current_threshold = self.style_thresholds[detected_style]
if self.verbose:
print(f"Auto-detected style: {detected_style.name}, using threshold: {current_threshold}")
else:
detected_style = self.image_style
current_threshold = self.confidence_threshold
# Apply style-specific preprocessing
processed_images = []
for img in images:
processed = self.preprocess_image_by_style(img, detected_style)
processed_images.append(processed)
# Convert color format
processed_images = np.array(processed_images)
processed_images = processed_images[..., ::-1]
# Detect faces with original method
detected_faces = self.face_detector.detect_from_batch(processed_images.copy())
results = []
for i, d in enumerate(detected_faces):
if len(d) == 0:
results.append(None)
continue
# Filter by style-specific confidence threshold
valid_detections = [det for det in d if len(det) > 4 and det[-1] > current_threshold]
if len(valid_detections) == 0:
results.append(None)
continue
# Use the detection with highest confidence
best_detection = max(valid_detections, key=lambda x: x[-1])
best_detection = np.clip(best_detection, 0, None)
x1, y1, x2, y2 = map(int, best_detection[:-1])
results.append((x1, y1, x2, y2))
return results