recognition_result_tracker.py
20.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# AIfeng/2025-07-07 15:25:48
# 识别结果追踪模块 - 流式识别结果的完整追踪与关联管理
import time
import uuid
import hashlib
import threading
from typing import List, Dict, Optional, Set, Tuple
from dataclasses import dataclass, field
from enum import Enum
import logging
from collections import defaultdict, deque
class ResultType(Enum):
"""识别结果类型"""
PARTIAL = "partial" # 部分结果
REFINED = "refined" # 精化结果
FINAL = "final" # 最终结果
CORRECTED = "corrected" # 修正结果
class ResultStatus(Enum):
"""结果状态"""
ACTIVE = "active" # 活跃状态
SUPERSEDED = "superseded" # 被替代
EXPIRED = "expired" # 已过期
ARCHIVED = "archived" # 已归档
@dataclass
class RecognitionSegmentID:
"""识别片段唯一标识"""
session_id: str # 会话ID
segment_id: str # 片段ID
sequence_number: int # 序列号
parent_segment_id: Optional[str] = None # 父片段ID
timestamp: float = field(default_factory=time.time)
def __post_init__(self):
if not self.segment_id:
self.segment_id = f"{self.session_id}_{self.sequence_number}_{int(self.timestamp * 1000)}"
@dataclass
class RecognitionResult:
"""增强的识别结果"""
id: RecognitionSegmentID
text: str
confidence: float
timestamp: float
audio_duration: float
result_type: ResultType
stage: str # 识别阶段
audio_segment_hash: str # 音频片段哈希值
# 关联信息
predecessor_ids: List[str] = field(default_factory=list)
successor_ids: List[str] = field(default_factory=list)
# 状态信息
status: ResultStatus = ResultStatus.ACTIVE
superseded_by: Optional[str] = None
superseded_at: Optional[float] = None
# 质量指标
accuracy_score: float = 0.0
processing_time: float = 0.0
# 元数据
metadata: Dict = field(default_factory=dict)
def to_dict(self) -> Dict:
"""转换为字典格式"""
return {
'id': {
'session_id': self.id.session_id,
'segment_id': self.id.segment_id,
'sequence_number': self.id.sequence_number,
'parent_segment_id': self.id.parent_segment_id,
'timestamp': self.id.timestamp
},
'text': self.text,
'confidence': self.confidence,
'timestamp': self.timestamp,
'audio_duration': self.audio_duration,
'result_type': self.result_type.value,
'stage': self.stage,
'audio_segment_hash': self.audio_segment_hash,
'predecessor_ids': self.predecessor_ids,
'successor_ids': self.successor_ids,
'status': self.status.value,
'superseded_by': self.superseded_by,
'superseded_at': self.superseded_at,
'accuracy_score': self.accuracy_score,
'processing_time': self.processing_time,
'metadata': self.metadata
}
class ResultRelationship:
"""结果关系管理"""
def __init__(self):
self.parent_child_map = defaultdict(set) # 父子关系
self.predecessor_successor_map = defaultdict(set) # 前后继关系
self.supersede_map = {} # 替代关系
def add_parent_child_relation(self, parent_id: str, child_id: str):
"""添加父子关系"""
self.parent_child_map[parent_id].add(child_id)
def add_predecessor_successor_relation(self, predecessor_id: str, successor_id: str):
"""添加前后继关系"""
self.predecessor_successor_map[predecessor_id].add(successor_id)
def add_supersede_relation(self, old_id: str, new_id: str):
"""添加替代关系"""
self.supersede_map[old_id] = new_id
def get_children(self, parent_id: str) -> Set[str]:
"""获取子结果"""
return self.parent_child_map.get(parent_id, set())
def get_successors(self, predecessor_id: str) -> Set[str]:
"""获取后继结果"""
return self.predecessor_successor_map.get(predecessor_id, set())
def get_superseding_result(self, old_id: str) -> Optional[str]:
"""获取替代结果"""
return self.supersede_map.get(old_id)
class RecognitionResultTracker:
"""识别结果追踪器"""
def __init__(self, config: Dict = None):
self.config = config or self._get_default_config()
# 结果存储
self.result_graph = {} # 结果关联图
self.session_results = defaultdict(list) # 按会话组织的结果
self.active_segments = {} # 活跃片段
self.completed_segments = {} # 完成片段
# 关系管理
self.relationships = ResultRelationship()
# 序列号管理
self.session_sequences = defaultdict(int)
# 性能统计
self.statistics = {
'total_results': 0,
'active_sessions': 0,
'superseded_results': 0,
'average_chain_length': 0.0
}
self.logger = logging.getLogger(__name__)
self._lock = threading.RLock()
# 回调函数管理
self.result_callbacks = [] # 结果回调
self.error_callbacks = [] # 错误回调
# 启动清理任务
self._start_cleanup_task()
def _get_default_config(self) -> Dict:
"""获取默认配置"""
return {
'max_chain_length': 10,
'cleanup_interval': 120.0,
'max_session_age': 3600.0, # 1小时
'max_result_age': 300.0, # 5分钟
'enable_relationship_tracking': True,
'enable_quality_tracking': True
}
def create_session(self, session_id: str = None) -> str:
"""创建新会话"""
if not session_id:
session_id = str(uuid.uuid4())
with self._lock:
if session_id not in self.session_sequences:
self.session_sequences[session_id] = 0
self.statistics['active_sessions'] += 1
self.logger.info(f"创建新会话: {session_id}")
return session_id
def register_result_callback(self, callback):
"""注册结果回调函数"""
self.result_callbacks.append(callback)
self.logger.debug("注册结果回调函数")
def register_error_callback(self, callback):
"""注册错误回调函数"""
self.error_callbacks.append(callback)
self.logger.debug("注册错误回调函数")
def _trigger_result_callbacks(self, session_id: str, result: RecognitionResult):
"""触发结果回调"""
for callback in self.result_callbacks:
try:
callback(session_id, result)
except Exception as e:
self.logger.error(f"结果回调执行失败: {e}")
def _trigger_error_callbacks(self, session_id: str, error: Exception):
"""触发错误回调"""
for callback in self.error_callbacks:
try:
callback(session_id, error)
except Exception as e:
self.logger.error(f"错误回调执行失败: {e}")
def add_recognition_result(self, session_id: str, text: str, confidence: float,
audio_data: bytes, result_type: ResultType, stage: str,
predecessor_ids: List[str] = None,
parent_segment_id: str = None,
metadata: Dict = None) -> str:
"""添加识别结果并建立关联"""
with self._lock:
# 生成序列号
sequence_number = self.session_sequences[session_id]
self.session_sequences[session_id] += 1
# 创建结果ID
result_id = RecognitionSegmentID(
session_id=session_id,
segment_id="", # 将在__post_init__中生成
sequence_number=sequence_number,
parent_segment_id=parent_segment_id
)
# 计算音频哈希
audio_hash = hashlib.md5(audio_data).hexdigest() if audio_data else ""
# 创建识别结果
result = RecognitionResult(
id=result_id,
text=text,
confidence=confidence,
timestamp=time.time(),
audio_duration=len(audio_data) / 32000.0 if audio_data else 0.0, # 假设16kHz, 2字节
result_type=result_type,
stage=stage,
audio_segment_hash=audio_hash,
predecessor_ids=predecessor_ids or [],
metadata=metadata or {}
)
# 添加到结果图
segment_id = result.id.segment_id
self.result_graph[segment_id] = {
'result': result,
'predecessors': predecessor_ids or [],
'successors': [],
'created_at': time.time(),
'last_accessed': time.time()
}
# 建立关联关系
self._establish_relationships(result, predecessor_ids, parent_segment_id)
# 添加到会话结果
self.session_results[session_id].append(segment_id)
# 更新统计信息
self.statistics['total_results'] += 1
self.logger.debug(f"添加识别结果: {segment_id}, 类型: {result_type.value}")
return segment_id
def _establish_relationships(self, result: RecognitionResult,
predecessor_ids: List[str],
parent_segment_id: str):
"""建立结果关联关系"""
segment_id = result.id.segment_id
# 建立前后继关系
if predecessor_ids:
for pred_id in predecessor_ids:
if pred_id in self.result_graph:
# 更新前驱的后继列表
self.result_graph[pred_id]['successors'].append(segment_id)
# 添加到关系管理器
self.relationships.add_predecessor_successor_relation(pred_id, segment_id)
# 如果是最终结果,标记前驱为被替代
if result.result_type == ResultType.FINAL:
self._mark_superseded(pred_id, segment_id)
# 建立父子关系
if parent_segment_id and parent_segment_id in self.result_graph:
self.relationships.add_parent_child_relation(parent_segment_id, segment_id)
def _mark_superseded(self, old_result_id: str, new_result_id: str):
"""标记结果为被替代"""
if old_result_id in self.result_graph:
old_result = self.result_graph[old_result_id]['result']
old_result.status = ResultStatus.SUPERSEDED
old_result.superseded_by = new_result_id
old_result.superseded_at = time.time()
# 添加替代关系
self.relationships.add_supersede_relation(old_result_id, new_result_id)
self.statistics['superseded_results'] += 1
self.logger.debug(f"结果 {old_result_id} 被 {new_result_id} 替代")
def get_result_chain(self, segment_id: str) -> List[RecognitionResult]:
"""获取完整的识别链路"""
with self._lock:
if segment_id not in self.result_graph:
return []
# 更新访问时间
self.result_graph[segment_id]['last_accessed'] = time.time()
chain = []
visited = set()
# 向前追溯到起始结果
self._trace_backwards(segment_id, chain, visited)
# 向后追溯到最终结果
self._trace_forwards(segment_id, chain, visited)
# 按时间戳排序
chain.sort(key=lambda r: r.timestamp)
return chain
def _trace_backwards(self, segment_id: str, chain: List[RecognitionResult], visited: Set[str]):
"""向前追溯结果链"""
if segment_id in visited or segment_id not in self.result_graph:
return
visited.add(segment_id)
result_info = self.result_graph[segment_id]
result = result_info['result']
# 添加当前结果
if result not in chain:
chain.append(result)
# 递归追溯前驱
for pred_id in result_info['predecessors']:
self._trace_backwards(pred_id, chain, visited)
def _trace_forwards(self, segment_id: str, chain: List[RecognitionResult], visited: Set[str]):
"""向后追溯结果链"""
if segment_id in visited or segment_id not in self.result_graph:
return
visited.add(segment_id)
result_info = self.result_graph[segment_id]
# 递归追溯后继
for succ_id in result_info['successors']:
if succ_id not in visited and succ_id in self.result_graph:
succ_result = self.result_graph[succ_id]['result']
if succ_result not in chain:
chain.append(succ_result)
self._trace_forwards(succ_id, chain, visited)
def get_session_results(self, session_id: str, include_superseded: bool = False) -> List[RecognitionResult]:
"""获取会话的所有结果"""
with self._lock:
if session_id not in self.session_results:
return []
results = []
for segment_id in self.session_results[session_id]:
if segment_id in self.result_graph:
result = self.result_graph[segment_id]['result']
if include_superseded or result.status != ResultStatus.SUPERSEDED:
results.append(result)
# 按序列号排序
results.sort(key=lambda r: r.id.sequence_number)
return results
def get_active_results(self, session_id: str) -> List[RecognitionResult]:
"""获取会话的活跃结果"""
return [
result for result in self.get_session_results(session_id)
if result.status == ResultStatus.ACTIVE
]
def get_final_results(self, session_id: str) -> List[RecognitionResult]:
"""获取会话的最终结果"""
return [
result for result in self.get_session_results(session_id)
if result.result_type == ResultType.FINAL and result.status == ResultStatus.ACTIVE
]
def update_result_quality(self, segment_id: str, accuracy_score: float, processing_time: float):
"""更新结果质量指标"""
with self._lock:
if segment_id in self.result_graph:
result = self.result_graph[segment_id]['result']
result.accuracy_score = accuracy_score
result.processing_time = processing_time
self.logger.debug(f"更新结果质量: {segment_id}, 准确率: {accuracy_score:.2f}")
def complete_session(self, session_id: str):
"""完成会话"""
with self._lock:
if session_id in self.session_results:
# 将活跃结果移动到完成状态
for segment_id in self.session_results[session_id]:
if segment_id in self.result_graph:
result = self.result_graph[segment_id]['result']
if result.status == ResultStatus.ACTIVE:
result.status = ResultStatus.ARCHIVED
self.statistics['active_sessions'] -= 1
self.logger.info(f"会话已完成: {session_id}")
def _start_cleanup_task(self):
"""启动清理任务"""
def cleanup_worker():
while True:
try:
# 使用get方法获取配置,如果不存在则使用默认值
cleanup_interval = self.config.get('cleanup_interval', 120.0)
time.sleep(cleanup_interval)
self._cleanup_expired_results()
except Exception as e:
self.logger.error(f"清理任务出错: {e}")
cleanup_thread = threading.Thread(target=cleanup_worker, daemon=True)
cleanup_thread.start()
self.logger.info("清理任务已启动")
def _cleanup_expired_results(self):
"""清理过期结果"""
current_time = time.time()
max_result_age = self.config.get('max_result_age', 300.0)
max_session_age = self.config.get('max_session_age', 3600.0)
with self._lock:
expired_segments = []
expired_sessions = []
# 查找过期结果
for segment_id, result_info in self.result_graph.items():
if current_time - result_info['created_at'] > max_result_age:
result = result_info['result']
if result.status in [ResultStatus.SUPERSEDED, ResultStatus.ARCHIVED]:
expired_segments.append(segment_id)
# 查找过期会话
for session_id, result_ids in self.session_results.items():
if result_ids:
# 检查会话中最新结果的时间
latest_time = max(
self.result_graph[rid]['created_at']
for rid in result_ids
if rid in self.result_graph
)
if current_time - latest_time > max_session_age:
expired_sessions.append(session_id)
# 清理过期结果
for segment_id in expired_segments:
del self.result_graph[segment_id]
# 清理过期会话
for session_id in expired_sessions:
del self.session_results[session_id]
if session_id in self.session_sequences:
del self.session_sequences[session_id]
if expired_segments or expired_sessions:
self.logger.info(f"清理完成: {len(expired_segments)} 个结果, {len(expired_sessions)} 个会话")
def get_statistics(self) -> Dict:
"""获取统计信息"""
with self._lock:
# 计算平均链长度
if self.result_graph:
total_chain_length = 0
chain_count = 0
for segment_id in self.result_graph:
chain = self.get_result_chain(segment_id)
if chain:
total_chain_length += len(chain)
chain_count += 1
avg_chain_length = total_chain_length / chain_count if chain_count > 0 else 0
self.statistics['average_chain_length'] = avg_chain_length
return self.statistics.copy()
def export_session_data(self, session_id: str) -> Dict:
"""导出会话数据"""
with self._lock:
results = self.get_session_results(session_id, include_superseded=True)
return {
'session_id': session_id,
'total_results': len(results),
'results': [result.to_dict() for result in results],
'export_timestamp': time.time()
}
def get_performance_stats(self) -> Dict:
"""获取性能统计"""
with self._lock:
total_results = len(self.result_graph)
total_sessions = len(self.session_results)
return {
'total_sessions': total_sessions,
'total_results': total_results,
'average_results_per_session': total_results / total_sessions if total_sessions > 0 else 0.0,
'active_sessions': self.statistics['active_sessions']
}
def reset(self):
"""重置追踪器"""
with self._lock:
self.result_graph.clear()
self.session_results.clear()
self.active_segments.clear()
self.completed_segments.clear()
self.session_sequences.clear()
self.relationships = ResultRelationship()
# 重置统计信息
self.statistics = {
'total_results': 0,
'active_sessions': 0,
'superseded_results': 0,
'average_chain_length': 0.0
}
self.logger.info("识别结果追踪器已重置")