intelligent_segmentation.py
16.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# AIfeng/2025-07-07 15:25:48
# 智能断句模块 - 基于静音间隔的语义分段
import time
import numpy as np
from typing import List, Dict, Optional, Tuple
from dataclasses import dataclass
from enum import Enum
import threading
import logging
class SegmentType(Enum):
"""语音片段类型"""
WORD_CONTINUATION = "word_continuation" # 词间连接
PHRASE_CONNECTION = "phrase_connection" # 短语连接
SENTENCE_BOUNDARY = "sentence_boundary" # 句子边界
TOPIC_BOUNDARY = "topic_boundary" # 话题边界
@dataclass
class SpeechSegment:
"""语音片段数据结构"""
text: str
start_time: float
end_time: float
silence_before: float
silence_after: float
confidence: float
segment_type: SegmentType
is_complete: bool = False
class IntelligentSentenceSegmentation:
"""智能断句处理器"""
def __init__(self, config: Dict = None):
self.config = config or self._get_default_config()
self.silence_thresholds = self.config.get('silence_thresholds', {
'micro_pause': 0.3, # 词间停顿
'phrase_pause': 1.0, # 短语间停顿
'sentence_pause': 2.0, # 句子间停顿
'topic_pause': 4.0 # 话题间停顿
})
self.segment_buffer = [] # 片段缓冲区
self.user_speech_pattern = {
'avg_pause_duration': 1.2,
'speech_rate': 150, # 词/分钟
'pause_variance': 0.3
}
self.recent_pauses = [] # 最近的停顿记录
self.adaptive_enabled = self.config.get('adaptive_threshold', True)
self.logger = logging.getLogger(__name__)
def _get_default_config(self) -> Dict:
"""获取默认配置"""
return {
'silence_thresholds': {
'micro_pause': 0.3,
'phrase_pause': 1.0,
'sentence_pause': 2.0,
'topic_pause': 4.0
},
'adaptive_threshold': True,
'semantic_analysis': True,
'grammar_check': True,
'max_segment_length': 50, # 最大片段长度(词数)
'min_segment_length': 3 # 最小片段长度(词数)
}
def process_speech_segment(self, text: str, silence_duration: float,
timestamp: float, confidence: float) -> List[SpeechSegment]:
"""处理语音片段"""
try:
# 记录停顿时长用于自适应调整
if silence_duration > 0:
self.recent_pauses.append(silence_duration)
if len(self.recent_pauses) > 20: # 保持最近20个停顿记录
self.recent_pauses.pop(0)
# 自适应阈值调整
if self.adaptive_enabled:
self._adjust_thresholds()
# 确定片段类型
segment_type = self._classify_segment_type(text, silence_duration)
# 创建语音片段
segment = SpeechSegment(
text=text,
start_time=timestamp,
end_time=timestamp + len(text.split()) * 0.4, # 估算结束时间
silence_before=silence_duration,
silence_after=0.0, # 后续更新
confidence=confidence,
segment_type=segment_type
)
# 添加到缓冲区
self.segment_buffer.append(segment)
# 处理片段合并和分割
processed_segments = self._process_segment_buffer()
return processed_segments
except Exception as e:
self.logger.error(f"处理语音片段时出错: {e}")
return []
def _classify_segment_type(self, text: str, silence_duration: float) -> SegmentType:
"""分类片段类型"""
# 确保阈值字典完整性
if not isinstance(self.silence_thresholds, dict):
self.silence_thresholds = self._get_default_config()['silence_thresholds']
# 安全获取阈值,使用默认值作为后备
micro_pause = self.silence_thresholds.get('micro_pause', 0.3)
phrase_pause = self.silence_thresholds.get('phrase_pause', 1.0)
sentence_pause = self.silence_thresholds.get('sentence_pause', 2.0)
# 基于静音时长的初步分类
if silence_duration <= micro_pause:
return SegmentType.WORD_CONTINUATION
elif silence_duration <= phrase_pause:
return SegmentType.PHRASE_CONNECTION
elif silence_duration <= sentence_pause:
return SegmentType.SENTENCE_BOUNDARY
else:
return SegmentType.TOPIC_BOUNDARY
def _process_segment_buffer(self) -> List[SpeechSegment]:
"""处理片段缓冲区"""
if len(self.segment_buffer) < 2:
return []
processed_segments = []
current_segment = self.segment_buffer[-2] # 倒数第二个片段
next_segment = self.segment_buffer[-1] # 最新片段
# 语义连接分析
connection_type = self._analyze_semantic_connection(
current_segment.text,
next_segment.text,
next_segment.silence_before
)
# 根据连接类型决定处理方式
if connection_type == 'continuation':
# 合并片段
merged_segment = self._merge_segments(current_segment, next_segment)
self.segment_buffer[-2] = merged_segment
self.segment_buffer.pop() # 移除最新片段
elif connection_type == 'new_sentence':
# 标记当前片段为完成
current_segment.is_complete = True
processed_segments.append(current_segment)
return processed_segments
def _analyze_semantic_connection(self, prev_text: str, current_text: str,
silence_duration: float) -> str:
"""分析语义连接类型"""
# 确保silence_thresholds是字典类型
if not isinstance(self.silence_thresholds, dict):
self.silence_thresholds = {
'micro_pause': 0.3,
'phrase_pause': 0.8,
'sentence_pause': 1.5,
'topic_pause': 3.0
}
# 语法完整性检查
if self._is_grammatically_complete(prev_text):
sentence_pause_threshold = self.silence_thresholds.get('sentence_pause', 1.5)
if silence_duration >= sentence_pause_threshold:
return 'new_sentence'
# 语义相关性检查
if self.config.get('semantic_analysis', True):
semantic_score = self._calculate_semantic_similarity(prev_text, current_text)
phrase_pause_threshold = self.silence_thresholds.get('phrase_pause', 0.8)
if silence_duration >= phrase_pause_threshold:
if semantic_score > 0.7:
return 'continuation' # 语义相关,继续当前句子
else:
return 'new_sentence' # 语义不相关,新句子
return 'continuation'
def _is_grammatically_complete(self, text: str) -> bool:
"""检查语法完整性"""
if not self.config.get('grammar_check', True):
return False
# 简单的语法完整性检查
text = text.strip()
# 检查句子结束标点
if text.endswith(('。', '!', '?', '.', '!', '?')):
return True
# 检查常见的完整句式
complete_patterns = [
'是的', '不是', '好的', '没有', '有的', '对的', '错的',
'可以', '不可以', '行', '不行', '是', '不是'
]
for pattern in complete_patterns:
if text.endswith(pattern):
return True
# 检查词数(简单启发式)
word_count = len(text.split())
if word_count >= self.config.get('min_complete_words', 5):
return True
return False
def _calculate_semantic_similarity(self, text1: str, text2: str) -> float:
"""计算语义相似度(简化版本)"""
# 这里使用简单的词汇重叠度作为语义相似度的近似
words1 = set(text1.split())
words2 = set(text2.split())
if not words1 or not words2:
return 0.0
intersection = words1.intersection(words2)
union = words1.union(words2)
return len(intersection) / len(union) if union else 0.0
def _merge_segments(self, segment1: SpeechSegment, segment2: SpeechSegment) -> SpeechSegment:
"""合并两个片段"""
merged_text = f"{segment1.text} {segment2.text}"
return SpeechSegment(
text=merged_text,
start_time=segment1.start_time,
end_time=segment2.end_time,
silence_before=segment1.silence_before,
silence_after=segment2.silence_after,
confidence=min(segment1.confidence, segment2.confidence),
segment_type=segment2.segment_type,
is_complete=False
)
def _adjust_thresholds(self):
"""根据用户说话习惯动态调整阈值"""
if len(self.recent_pauses) >= 10:
avg_pause = np.mean(self.recent_pauses)
std_pause = np.std(self.recent_pauses)
# 确保silence_thresholds是字典类型
if not isinstance(self.silence_thresholds, dict):
self.silence_thresholds = {
'micro_pause': 0.3,
'phrase_pause': 0.8,
'sentence_pause': 1.5,
'topic_pause': 3.0
}
# 个性化阈值调整
self.silence_thresholds['phrase_pause'] = max(0.5, avg_pause + 0.5 * std_pause)
self.silence_thresholds['sentence_pause'] = max(1.0, avg_pause + 1.5 * std_pause)
phrase_threshold = self.silence_thresholds.get('phrase_pause', 0.8)
sentence_threshold = self.silence_thresholds.get('sentence_pause', 1.5)
self.logger.debug(f"阈值已调整: phrase={phrase_threshold:.2f}, "
f"sentence={sentence_threshold:.2f}")
def get_completed_segments(self) -> List[SpeechSegment]:
"""获取已完成的片段"""
completed = [seg for seg in self.segment_buffer if seg.is_complete]
# 清理已完成的片段
self.segment_buffer = [seg for seg in self.segment_buffer if not seg.is_complete]
return completed
def force_complete_current_segment(self) -> Optional[SpeechSegment]:
"""强制完成当前片段"""
if self.segment_buffer:
current_segment = self.segment_buffer[-1]
current_segment.is_complete = True
return current_segment
return None
def reset(self):
"""重置分割器状态"""
self.segment_buffer.clear()
self.recent_pauses.clear()
self.logger.info("智能断句器已重置")
def create_session(self, session_id: str):
"""创建会话"""
# 为会话初始化相关数据结构
self.logger.info(f"智能断句会话创建: {session_id}")
def update_config(self, config: Dict):
"""更新配置"""
if 'silence_thresholds' in config:
# 更新静音阈值配置
thresholds = config['silence_thresholds']
self.logger.info(f"更新静音阈值配置: {thresholds}")
if 'semantic_analysis' in config:
# 更新语义分析配置
semantic_config = config['semantic_analysis']
self.logger.info(f"更新语义分析配置: {semantic_config}")
def complete_session(self, session_id: str):
"""完成会话"""
# 清理会话相关的缓存数据
self.logger.info(f"智能断句会话完成: {session_id}")
def shutdown(self):
"""关闭模块"""
self.reset()
self.logger.info("智能断句模块已关闭")
def get_statistics(self) -> Dict:
"""获取统计信息"""
return {
'buffer_size': len(self.segment_buffer),
'recent_pauses_count': len(self.recent_pauses),
'avg_pause_duration': np.mean(self.recent_pauses) if self.recent_pauses else 0,
'current_thresholds': self.silence_thresholds.copy(),
'adaptive_enabled': self.adaptive_enabled
}
def process_text(self, text: str, context: Dict = None) -> Dict:
"""处理文本分割(兼容OptimizationManager调用)"""
try:
# 提取上下文信息
timestamp = context.get('timestamp', time.time()) if context else time.time()
confidence = context.get('confidence', 0.8) if context else 0.8
silence_duration = context.get('silence_duration', 1.0) if context else 1.0
# 处理语音片段
segments = self.process_speech_segment(text, silence_duration, timestamp, confidence)
# 返回处理结果
if segments:
# 返回最新的完整片段
latest_segment = segments[-1]
# 安全获取segment_type的值
segment_type_value = latest_segment.segment_type.value if isinstance(latest_segment.segment_type, SegmentType) else str(latest_segment.segment_type)
return {
'success': True,
'text': latest_segment.text,
'confidence': latest_segment.confidence,
'segment_type': segment_type_value,
'is_complete': latest_segment.is_complete
}
else:
# 如果没有完整片段,返回原文本
return {
'success': True,
'text': text,
'confidence': confidence,
'segment_type': 'continuation',
'is_complete': False
}
except Exception as e:
self.logger.error(f"处理文本分割时出错: {e}")
return {
'success': False,
'text': text,
'confidence': 0.0,
'error': str(e)
}
def get_performance_stats(self) -> Dict:
"""获取性能统计"""
total_segments = len(self.segment_buffer)
completed_segments = len([seg for seg in self.segment_buffer if seg.is_complete])
avg_confidence = np.mean([seg.confidence for seg in self.segment_buffer]) if self.segment_buffer else 0.0
return {
'total_segments': total_segments,
'completed_segments': completed_segments,
'pending_segments': total_segments - completed_segments,
'average_confidence': avg_confidence,
'processing_efficiency': completed_segments / total_segments if total_segments > 0 else 0.0
}
class AdaptiveSilenceThreshold:
"""自适应静音阈值调整器"""
def __init__(self):
self.user_speech_pattern = {
'avg_pause_duration': 1.2,
'speech_rate': 150, # 词/分钟
'pause_variance': 0.3
}
self.history_window = 50 # 历史窗口大小
self.pause_history = []
def update_speech_pattern(self, pause_duration: float, speech_rate: float = None):
"""更新用户说话模式"""
self.pause_history.append(pause_duration)
if len(self.pause_history) > self.history_window:
self.pause_history.pop(0)
# 更新平均停顿时长
self.user_speech_pattern['avg_pause_duration'] = np.mean(self.pause_history)
self.user_speech_pattern['pause_variance'] = np.std(self.pause_history)
if speech_rate:
self.user_speech_pattern['speech_rate'] = speech_rate
def get_adaptive_thresholds(self, base_thresholds: Dict) -> Dict:
"""获取自适应阈值"""
if len(self.pause_history) < 5:
return base_thresholds
avg_pause = self.user_speech_pattern['avg_pause_duration']
variance = self.user_speech_pattern['pause_variance']
# 基于用户习惯调整阈值
adaptive_thresholds = base_thresholds.copy()
# 调整系数
adjustment_factor = min(2.0, max(0.5, avg_pause / 1.2)) # 基准1.2秒
for key in adaptive_thresholds:
adaptive_thresholds[key] *= adjustment_factor
# 添加方差影响
adaptive_thresholds[key] += variance * 0.3
return adaptive_thresholds