optimization_manager.py
21.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# AIfeng/2025-07-07 15:25:48
# 流式语音识别优化集成管理器
import json
import time
import threading
import logging
from typing import Dict, List, Optional, Callable, Any
from pathlib import Path
from dataclasses import dataclass
from enum import Enum
import asyncio
from concurrent.futures import ThreadPoolExecutor
from .intelligent_segmentation import IntelligentSentenceSegmentation, SpeechSegment
from .adaptive_vad_chunking import AdaptiveVADChunking, ChunkStrategy, AudioChunk
from .recognition_result_tracker import RecognitionResultTracker, ResultType
from .streaming_display_manager import StreamingDisplayManager, UpdateType, DisplayPriority
class OptimizationMode(Enum):
"""优化模式"""
SPEED_FIRST = "speed_first" # 速度优先
ACCURACY_FIRST = "accuracy_first" # 精度优先
BALANCED = "balanced" # 平衡模式
ADAPTIVE = "adaptive" # 自适应模式
class ProcessingStage(Enum):
"""处理阶段"""
AUDIO_INPUT = "audio_input"
VAD_CHUNKING = "vad_chunking"
SEGMENTATION = "segmentation"
RECOGNITION = "recognition"
RESULT_TRACKING = "result_tracking"
DISPLAY_UPDATE = "display_update"
@dataclass
class ProcessingContext:
"""处理上下文"""
session_id: str
audio_data: bytes
sample_rate: int
timestamp: float
metadata: Dict = None
@dataclass
class OptimizationMetrics:
"""优化指标"""
total_latency_ms: float
segmentation_latency_ms: float
chunking_latency_ms: float
tracking_latency_ms: float
display_latency_ms: float
accuracy_score: float
confidence_score: float
processing_efficiency: float
class OptimizationManager:
"""流式语音识别优化管理器"""
def __init__(self, config_path: str = None):
# 加载配置
self.config = self._load_config(config_path)
# 初始化各个优化模块
self.segmentation_module = IntelligentSentenceSegmentation(
self.config.get('intelligent_segmentation', {})
)
self.chunking_module = AdaptiveVADChunking(
self.config.get('adaptive_vad_chunking', {})
)
self.tracking_module = RecognitionResultTracker(
self.config.get('recognition_result_tracker', {})
)
self.display_module = StreamingDisplayManager(
self.config.get('streaming_display_manager', {})
)
# 优化模式
self.current_mode = OptimizationMode.BALANCED
# 性能监控
self.performance_metrics = {}
self.processing_stats = {
'total_sessions': 0,
'active_sessions': 0,
'total_audio_processed_seconds': 0.0,
'average_latency_ms': 0.0,
'average_accuracy': 0.0
}
# 回调函数
self.result_callbacks = [] # 识别结果回调
self.error_callbacks = [] # 错误处理回调
self.metrics_callbacks = [] # 性能指标回调
# 线程池
self.executor = ThreadPoolExecutor(
max_workers=self.config.get('integration', {}).get('performance_coordination', {}).get('max_workers', 8),
thread_name_prefix='OptimizationManager'
)
# 事件总线(简化实现)
self.event_handlers = {}
self.logger = logging.getLogger(__name__)
self._lock = threading.RLock()
self._running = True
# 注册模块间的回调
self._setup_inter_module_communication()
self.logger.info("流式语音识别优化管理器初始化完成")
def _load_config(self, config_path: str = None) -> Dict:
"""加载配置文件"""
if config_path is None:
config_path = Path(__file__).parent / "optimization_config.json"
try:
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
# 转换配置项:将cleanup_interval_minutes转换为cleanup_interval(秒)
if 'recognition_result_tracker' in config:
tracker_config = config['recognition_result_tracker']
if 'cleanup_interval_minutes' in tracker_config:
# 将分钟转换为秒
tracker_config['cleanup_interval'] = tracker_config['cleanup_interval_minutes'] * 60
# 保留原配置项以兼容
return config
except Exception as e:
self.logger.warning(f"加载配置文件失败: {e},使用默认配置")
return self._get_default_config()
def _get_default_config(self) -> Dict:
"""获取默认配置"""
return {
'intelligent_segmentation': {},
'adaptive_vad_chunking': {},
'recognition_result_tracker': {},
'streaming_display_manager': {},
'integration': {
'performance_coordination': {
'max_workers': 8
}
}
}
def _setup_inter_module_communication(self):
"""设置模块间通信"""
# 注册显示更新回调
self.tracking_module.register_result_callback(self._on_tracking_result)
self.display_module.register_error_callback(self._on_display_error)
# 注册分片质量反馈
self.chunking_module.register_quality_callback(self._on_chunk_quality_feedback)
def set_optimization_mode(self, mode: OptimizationMode):
"""设置优化模式"""
# 类型检查
if not isinstance(mode, OptimizationMode):
raise TypeError(f"mode必须是OptimizationMode枚举类型,当前类型: {type(mode)}")
self.current_mode = mode
# 根据模式调整各模块参数
if mode == OptimizationMode.SPEED_FIRST:
self._configure_for_speed()
elif mode == OptimizationMode.ACCURACY_FIRST:
self._configure_for_accuracy()
elif mode == OptimizationMode.BALANCED:
self._configure_for_balance()
elif mode == OptimizationMode.ADAPTIVE:
self._configure_for_adaptive()
self.logger.info(f"优化模式已设置为: {mode.value}")
def _configure_for_speed(self):
"""配置速度优先模式"""
# 配置快速分片策略
self.chunking_module.set_strategy(ChunkStrategy.FAST_RESPONSE)
# 配置快速断句
self.segmentation_module.update_config({
'silence_thresholds': {
'short_pause': 0.2,
'medium_pause': 0.5,
'long_pause': 1.0,
'sentence_break': 1.5
}
})
# 配置立即显示刷新
self.display_module.config['refresh_strategies']['default_strategy'] = 'immediate'
def _configure_for_accuracy(self):
"""配置精度优先模式"""
# 配置高精度分片策略
self.chunking_module.set_strategy(ChunkStrategy.HIGH_ACCURACY)
# 配置精确断句
self.segmentation_module.update_config({
'semantic_analysis': {
'enabled': True,
'similarity_threshold': 0.8,
'context_window': 8
}
})
# 配置批量显示刷新
self.display_module.config['refresh_strategies']['default_strategy'] = 'batch'
def _configure_for_balance(self):
"""配置平衡模式"""
# 配置平衡分片策略
self.chunking_module.set_strategy(ChunkStrategy.BALANCED)
# 配置防抖显示刷新
self.display_module.config['refresh_strategies']['default_strategy'] = 'debounced'
def _configure_for_adaptive(self):
"""配置自适应模式"""
# 配置自适应分片策略
self.chunking_module.set_strategy(ChunkStrategy.ADAPTIVE)
# 配置自适应显示刷新
self.display_module.config['refresh_strategies']['default_strategy'] = 'adaptive'
def register_result_callback(self, callback: Callable[[str, str, float, bool], None]):
"""注册识别结果回调"""
self.result_callbacks.append(callback)
def register_error_callback(self, callback: Callable[[str, Exception], None]):
"""注册错误处理回调"""
self.error_callbacks.append(callback)
def register_metrics_callback(self, callback: Callable[[str, OptimizationMetrics], None]):
"""注册性能指标回调"""
self.metrics_callbacks.append(callback)
def create_session(self, session_id: str, config: Dict = None) -> bool:
"""创建处理会话"""
try:
# 在各个模块中创建会话
self.segmentation_module.create_session(session_id)
self.chunking_module.create_session(session_id)
self.tracking_module.create_session(session_id)
with self._lock:
self.processing_stats['total_sessions'] += 1
self.processing_stats['active_sessions'] += 1
self.logger.info(f"会话创建成功: {session_id}")
return True
except Exception as e:
self.logger.error(f"创建会话失败: {e}")
self._handle_error(session_id, e)
return False
def process_audio(self, session_id: str, audio_data: bytes,
sample_rate: int, timestamp: float = None) -> bool:
"""处理音频数据"""
if timestamp is None:
timestamp = time.time()
context = ProcessingContext(
session_id=session_id,
audio_data=audio_data,
sample_rate=sample_rate,
timestamp=timestamp
)
# 异步处理音频
self.executor.submit(self._process_audio_async, context)
return True
def complete_session(self, session_id: str) -> bool:
"""完成处理会话"""
try:
# 完成各个模块的会话
self.segmentation_module.complete_session(session_id)
self.chunking_module.complete_session(session_id)
self.tracking_module.complete_session(session_id)
with self._lock:
if self.processing_stats['active_sessions'] > 0:
self.processing_stats['active_sessions'] -= 1
self.logger.info(f"会话完成: {session_id}")
return True
except Exception as e:
self.logger.error(f"完成会话失败: {e}")
self._handle_error(session_id, e)
return False
def _process_audio_async(self, context: ProcessingContext):
"""异步处理音频数据"""
start_time = time.time()
metrics = OptimizationMetrics(
total_latency_ms=0,
segmentation_latency_ms=0,
chunking_latency_ms=0,
tracking_latency_ms=0,
display_latency_ms=0,
accuracy_score=0,
confidence_score=0,
processing_efficiency=0
)
try:
# 1. VAD分片处理
chunk_start = time.time()
chunks = self.chunking_module.process_audio(
context.session_id,
context.audio_data,
context.sample_rate
)
metrics.chunking_latency_ms = (time.time() - chunk_start) * 1000
# 2. 智能断句处理
seg_start = time.time()
for chunk in chunks:
if chunk.is_speech:
# 这里应该调用ASR服务获取识别结果
# 为了演示,我们模拟一个识别结果
mock_text = f"模拟识别文本_{chunk.chunk_id}"
mock_confidence = 0.85
# 进行智能断句
text_context = {
'session_id': context.session_id,
'timestamp': chunk.timestamp,
'confidence': mock_confidence,
'silence_duration': 0.0 # 默认值
}
segment_result = self.segmentation_module.process_text(
mock_text,
text_context
)
# 3. 结果追踪
track_start = time.time()
if segment_result.get('success', False):
result_id = self.tracking_module.add_recognition_result(
context.session_id,
segment_result['text'],
segment_result['confidence'],
context.audio_data, # audio_data
ResultType.PARTIAL if not segment_result.get('is_complete', False) else ResultType.FINAL, # result_type
'processing', # stage
None, # predecessor_ids
None, # parent_segment_id
{'timestamp': chunk.timestamp, 'duration': chunk.duration} # metadata
)
# 4. 显示更新
display_start = time.time()
self.display_module.update_display(
context.session_id,
result_id,
segment_result['text'],
UpdateType.REPLACE_FINAL if segment_result.get('is_complete', False) else UpdateType.APPEND,
segment_result['confidence'],
segment_result.get('is_complete', False),
DisplayPriority.HIGH if segment_result.get('is_complete', False) else DisplayPriority.NORMAL
)
metrics.display_latency_ms += (time.time() - display_start) * 1000
metrics.tracking_latency_ms += (time.time() - track_start) * 1000
metrics.segmentation_latency_ms = (time.time() - seg_start) * 1000
# 计算总延迟和效率
metrics.total_latency_ms = (time.time() - start_time) * 1000
# 防止除零错误
if metrics.total_latency_ms > 0:
metrics.processing_efficiency = len(context.audio_data) / metrics.total_latency_ms
else:
metrics.processing_efficiency = 0.0
self.logger.warning(f"处理延迟为0,无法计算处理效率 [{context.session_id}]")
# 更新性能统计
self._update_performance_stats(context.session_id, metrics)
# 触发指标回调
self._trigger_metrics_callbacks(context.session_id, metrics)
except Exception as e:
self.logger.error(f"处理音频时出错: {e}")
self._handle_error(context.session_id, e)
def _on_tracking_result(self, session_id: str, result_id: str, text: str,
confidence: float, is_final: bool):
"""处理追踪模块的结果回调"""
# 触发结果回调
for callback in self.result_callbacks:
try:
callback(session_id, text, confidence, is_final)
except Exception as e:
self.logger.error(f"结果回调执行出错: {e}")
def _on_display_error(self, session_id: str, error: Exception):
"""处理显示模块的错误回调"""
self.logger.error(f"显示模块错误 [{session_id}]: {error}")
self._handle_error(session_id, error)
def _on_chunk_quality_feedback(self, session_id: str, chunk_id: str,
quality_score: float, metrics: Dict):
"""处理分片质量反馈"""
# 根据质量反馈调整策略
if quality_score < 0.5:
self.logger.warning(f"分片质量较低 [{session_id}:{chunk_id}]: {quality_score}")
# 可以在这里实施自适应调整
def _handle_error(self, session_id: str, error: Exception):
"""处理错误"""
for callback in self.error_callbacks:
try:
callback(session_id, error)
except Exception as e:
self.logger.error(f"错误回调执行出错: {e}")
def _update_performance_stats(self, session_id: str, metrics: OptimizationMetrics):
"""更新性能统计"""
with self._lock:
# 更新平均延迟
current_avg = self.processing_stats['average_latency_ms']
total_sessions = self.processing_stats['total_sessions']
if total_sessions > 0:
new_avg = (current_avg * (total_sessions - 1) + metrics.total_latency_ms) / total_sessions
self.processing_stats['average_latency_ms'] = new_avg
# 存储会话指标
self.performance_metrics[session_id] = metrics
def _trigger_metrics_callbacks(self, session_id: str, metrics: OptimizationMetrics):
"""触发性能指标回调"""
for callback in self.metrics_callbacks:
try:
# 将session_id包含在metrics字典中传递给回调
metrics_dict = {
'session_id': session_id,
'total_latency_ms': metrics.total_latency_ms,
'chunking_latency_ms': metrics.chunking_latency_ms,
'segmentation_latency_ms': metrics.segmentation_latency_ms,
'tracking_latency_ms': metrics.tracking_latency_ms,
'display_latency_ms': metrics.display_latency_ms,
'processing_efficiency': metrics.processing_efficiency,
'accuracy_score': getattr(metrics, 'accuracy_score', 0.0)
}
callback(metrics_dict)
except Exception as e:
self.logger.error(f"指标回调执行出错: {e}")
def complete_session(self, session_id: str) -> bool:
"""完成处理会话"""
try:
# 完成各个模块的会话
self.segmentation_module.complete_session(session_id)
self.chunking_module.complete_session(session_id)
self.tracking_module.complete_session(session_id)
with self._lock:
self.processing_stats['active_sessions'] -= 1
if session_id in self.performance_metrics:
del self.performance_metrics[session_id]
self.logger.info(f"会话完成: {session_id}")
return True
except Exception as e:
self.logger.error(f"完成会话失败: {e}")
self._handle_error(session_id, e)
return False
def get_session_results(self, session_id: str) -> List[Dict]:
"""获取会话的所有结果"""
try:
# 从追踪模块获取结果
results = self.tracking_module.get_session_results(session_id)
# 从显示模块获取显示信息
display_segments = self.display_module.get_session_display(session_id)
# 合并结果
combined_results = []
for result in results:
result_dict = {
'result_id': result.result_id,
'text': result.text,
'confidence': result.confidence,
'is_final': result.is_final,
'timestamp': result.timestamp,
'result_type': result.result_type.value if hasattr(result.result_type, 'value') else str(result.result_type)
}
combined_results.append(result_dict)
return combined_results
except Exception as e:
self.logger.error(f"获取会话结果失败: {e}")
return []
def get_performance_stats(self) -> Dict:
"""获取性能统计"""
with self._lock:
stats = self.processing_stats.copy()
# 添加各模块的性能统计
stats['segmentation_stats'] = self.segmentation_module.get_performance_stats()
stats['chunking_stats'] = self.chunking_module.get_performance_stats()
stats['tracking_stats'] = self.tracking_module.get_performance_stats()
stats['display_stats'] = self.display_module.get_performance_stats()
return stats
def get_optimization_metrics(self, session_id: str = None) -> Dict:
"""获取优化指标"""
if session_id:
return self.performance_metrics.get(session_id, {})
else:
return self.performance_metrics.copy()
def shutdown(self):
"""关闭优化管理器"""
self._running = False
# 关闭各个模块
self.segmentation_module.shutdown()
self.chunking_module.shutdown()
self.tracking_module.shutdown()
self.display_module.shutdown()
# 关闭线程池
self.executor.shutdown(wait=True)
self.logger.info("流式语音识别优化管理器已关闭")