optimization_manager.py 21.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
# AIfeng/2025-07-07 15:25:48
# 流式语音识别优化集成管理器

import json
import time
import threading
import logging
from typing import Dict, List, Optional, Callable, Any
from pathlib import Path
from dataclasses import dataclass
from enum import Enum
import asyncio
from concurrent.futures import ThreadPoolExecutor

from .intelligent_segmentation import IntelligentSentenceSegmentation, SpeechSegment
from .adaptive_vad_chunking import AdaptiveVADChunking, ChunkStrategy, AudioChunk
from .recognition_result_tracker import RecognitionResultTracker, ResultType
from .streaming_display_manager import StreamingDisplayManager, UpdateType, DisplayPriority

class OptimizationMode(Enum):
    """优化模式"""
    SPEED_FIRST = "speed_first"          # 速度优先
    ACCURACY_FIRST = "accuracy_first"    # 精度优先
    BALANCED = "balanced"                # 平衡模式
    ADAPTIVE = "adaptive"                # 自适应模式

class ProcessingStage(Enum):
    """处理阶段"""
    AUDIO_INPUT = "audio_input"
    VAD_CHUNKING = "vad_chunking"
    SEGMENTATION = "segmentation"
    RECOGNITION = "recognition"
    RESULT_TRACKING = "result_tracking"
    DISPLAY_UPDATE = "display_update"

@dataclass
class ProcessingContext:
    """处理上下文"""
    session_id: str
    audio_data: bytes
    sample_rate: int
    timestamp: float
    metadata: Dict = None

@dataclass
class OptimizationMetrics:
    """优化指标"""
    total_latency_ms: float
    segmentation_latency_ms: float
    chunking_latency_ms: float
    tracking_latency_ms: float
    display_latency_ms: float
    accuracy_score: float
    confidence_score: float
    processing_efficiency: float

class OptimizationManager:
    """流式语音识别优化管理器"""
    
    def __init__(self, config_path: str = None):
        # 加载配置
        self.config = self._load_config(config_path)
        
        # 初始化各个优化模块
        self.segmentation_module = IntelligentSentenceSegmentation(
            self.config.get('intelligent_segmentation', {})
        )
        
        self.chunking_module = AdaptiveVADChunking(
            self.config.get('adaptive_vad_chunking', {})
        )
        
        self.tracking_module = RecognitionResultTracker(
            self.config.get('recognition_result_tracker', {})
        )
        
        self.display_module = StreamingDisplayManager(
            self.config.get('streaming_display_manager', {})
        )
        
        # 优化模式
        self.current_mode = OptimizationMode.BALANCED
        
        # 性能监控
        self.performance_metrics = {}
        self.processing_stats = {
            'total_sessions': 0,
            'active_sessions': 0,
            'total_audio_processed_seconds': 0.0,
            'average_latency_ms': 0.0,
            'average_accuracy': 0.0
        }
        
        # 回调函数
        self.result_callbacks = []  # 识别结果回调
        self.error_callbacks = []   # 错误处理回调
        self.metrics_callbacks = [] # 性能指标回调
        
        # 线程池
        self.executor = ThreadPoolExecutor(
            max_workers=self.config.get('integration', {}).get('performance_coordination', {}).get('max_workers', 8),
            thread_name_prefix='OptimizationManager'
        )
        
        # 事件总线(简化实现)
        self.event_handlers = {}
        
        self.logger = logging.getLogger(__name__)
        self._lock = threading.RLock()
        self._running = True
        
        # 注册模块间的回调
        self._setup_inter_module_communication()
        
        self.logger.info("流式语音识别优化管理器初始化完成")
    
    def _load_config(self, config_path: str = None) -> Dict:
        """加载配置文件"""
        if config_path is None:
            config_path = Path(__file__).parent / "optimization_config.json"
        
        try:
            with open(config_path, 'r', encoding='utf-8') as f:
                config = json.load(f)
            
            # 转换配置项:将cleanup_interval_minutes转换为cleanup_interval(秒)
            if 'recognition_result_tracker' in config:
                tracker_config = config['recognition_result_tracker']
                if 'cleanup_interval_minutes' in tracker_config:
                    # 将分钟转换为秒
                    tracker_config['cleanup_interval'] = tracker_config['cleanup_interval_minutes'] * 60
                    # 保留原配置项以兼容
            
            return config
        except Exception as e:
            self.logger.warning(f"加载配置文件失败: {e},使用默认配置")
            return self._get_default_config()
    
    def _get_default_config(self) -> Dict:
        """获取默认配置"""
        return {
            'intelligent_segmentation': {},
            'adaptive_vad_chunking': {},
            'recognition_result_tracker': {},
            'streaming_display_manager': {},
            'integration': {
                'performance_coordination': {
                    'max_workers': 8
                }
            }
        }
    
    def _setup_inter_module_communication(self):
        """设置模块间通信"""
        # 注册显示更新回调
        self.tracking_module.register_result_callback(self._on_tracking_result)
        self.display_module.register_error_callback(self._on_display_error)
        
        # 注册分片质量反馈
        self.chunking_module.register_quality_callback(self._on_chunk_quality_feedback)
    
    def set_optimization_mode(self, mode: OptimizationMode):
        """设置优化模式"""
        # 类型检查
        if not isinstance(mode, OptimizationMode):
            raise TypeError(f"mode必须是OptimizationMode枚举类型,当前类型: {type(mode)}")
            
        self.current_mode = mode
        
        # 根据模式调整各模块参数
        if mode == OptimizationMode.SPEED_FIRST:
            self._configure_for_speed()
        elif mode == OptimizationMode.ACCURACY_FIRST:
            self._configure_for_accuracy()
        elif mode == OptimizationMode.BALANCED:
            self._configure_for_balance()
        elif mode == OptimizationMode.ADAPTIVE:
            self._configure_for_adaptive()
        
        self.logger.info(f"优化模式已设置为: {mode.value}")
    
    def _configure_for_speed(self):
        """配置速度优先模式"""
        # 配置快速分片策略
        self.chunking_module.set_strategy(ChunkStrategy.FAST_RESPONSE)
        
        # 配置快速断句
        self.segmentation_module.update_config({
            'silence_thresholds': {
                'short_pause': 0.2,
                'medium_pause': 0.5,
                'long_pause': 1.0,
                'sentence_break': 1.5
            }
        })
        
        # 配置立即显示刷新
        self.display_module.config['refresh_strategies']['default_strategy'] = 'immediate'
    
    def _configure_for_accuracy(self):
        """配置精度优先模式"""
        # 配置高精度分片策略
        self.chunking_module.set_strategy(ChunkStrategy.HIGH_ACCURACY)
        
        # 配置精确断句
        self.segmentation_module.update_config({
            'semantic_analysis': {
                'enabled': True,
                'similarity_threshold': 0.8,
                'context_window': 8
            }
        })
        
        # 配置批量显示刷新
        self.display_module.config['refresh_strategies']['default_strategy'] = 'batch'
    
    def _configure_for_balance(self):
        """配置平衡模式"""
        # 配置平衡分片策略
        self.chunking_module.set_strategy(ChunkStrategy.BALANCED)
        
        # 配置防抖显示刷新
        self.display_module.config['refresh_strategies']['default_strategy'] = 'debounced'
    
    def _configure_for_adaptive(self):
        """配置自适应模式"""
        # 配置自适应分片策略
        self.chunking_module.set_strategy(ChunkStrategy.ADAPTIVE)
        
        # 配置自适应显示刷新
        self.display_module.config['refresh_strategies']['default_strategy'] = 'adaptive'
    
    def register_result_callback(self, callback: Callable[[str, str, float, bool], None]):
        """注册识别结果回调"""
        self.result_callbacks.append(callback)
    
    def register_error_callback(self, callback: Callable[[str, Exception], None]):
        """注册错误处理回调"""
        self.error_callbacks.append(callback)
    
    def register_metrics_callback(self, callback: Callable[[str, OptimizationMetrics], None]):
        """注册性能指标回调"""
        self.metrics_callbacks.append(callback)
    
    def create_session(self, session_id: str, config: Dict = None) -> bool:
        """创建处理会话"""
        try:
            # 在各个模块中创建会话
            self.segmentation_module.create_session(session_id)
            self.chunking_module.create_session(session_id)
            self.tracking_module.create_session(session_id)
            
            with self._lock:
                self.processing_stats['total_sessions'] += 1
                self.processing_stats['active_sessions'] += 1
            
            self.logger.info(f"会话创建成功: {session_id}")
            return True
            
        except Exception as e:
            self.logger.error(f"创建会话失败: {e}")
            self._handle_error(session_id, e)
            return False
    
    def process_audio(self, session_id: str, audio_data: bytes, 
                     sample_rate: int, timestamp: float = None) -> bool:
        """处理音频数据"""
        if timestamp is None:
            timestamp = time.time()
        
        context = ProcessingContext(
            session_id=session_id,
            audio_data=audio_data,
            sample_rate=sample_rate,
            timestamp=timestamp
        )
        
        # 异步处理音频
        self.executor.submit(self._process_audio_async, context)
        return True
    
    def complete_session(self, session_id: str) -> bool:
        """完成处理会话"""
        try:
            # 完成各个模块的会话
            self.segmentation_module.complete_session(session_id)
            self.chunking_module.complete_session(session_id)
            self.tracking_module.complete_session(session_id)
            
            with self._lock:
                if self.processing_stats['active_sessions'] > 0:
                    self.processing_stats['active_sessions'] -= 1
            
            self.logger.info(f"会话完成: {session_id}")
            return True
            
        except Exception as e:
            self.logger.error(f"完成会话失败: {e}")
            self._handle_error(session_id, e)
            return False
    
    def _process_audio_async(self, context: ProcessingContext):
        """异步处理音频数据"""
        start_time = time.time()
        metrics = OptimizationMetrics(
            total_latency_ms=0,
            segmentation_latency_ms=0,
            chunking_latency_ms=0,
            tracking_latency_ms=0,
            display_latency_ms=0,
            accuracy_score=0,
            confidence_score=0,
            processing_efficiency=0
        )
        
        try:
            # 1. VAD分片处理
            chunk_start = time.time()
            chunks = self.chunking_module.process_audio(
                context.session_id,
                context.audio_data,
                context.sample_rate
            )
            metrics.chunking_latency_ms = (time.time() - chunk_start) * 1000
            
            # 2. 智能断句处理
            seg_start = time.time()
            for chunk in chunks:
                if chunk.is_speech:
                    # 这里应该调用ASR服务获取识别结果
                    # 为了演示,我们模拟一个识别结果
                    mock_text = f"模拟识别文本_{chunk.chunk_id}"
                    mock_confidence = 0.85
                    
                    # 进行智能断句
                    text_context = {
                        'session_id': context.session_id,
                        'timestamp': chunk.timestamp,
                        'confidence': mock_confidence,
                        'silence_duration': 0.0  # 默认值
                    }
                    segment_result = self.segmentation_module.process_text(
                        mock_text,
                        text_context
                    )
                    
                    # 3. 结果追踪
                    track_start = time.time()
                    if segment_result.get('success', False):
                        result_id = self.tracking_module.add_recognition_result(
                            context.session_id,
                            segment_result['text'],
                            segment_result['confidence'],
                            context.audio_data,  # audio_data
                            ResultType.PARTIAL if not segment_result.get('is_complete', False) else ResultType.FINAL,  # result_type
                            'processing',  # stage
                            None,  # predecessor_ids
                            None,  # parent_segment_id
                            {'timestamp': chunk.timestamp, 'duration': chunk.duration}  # metadata
                        )
                        
                        # 4. 显示更新
                        display_start = time.time()
                        self.display_module.update_display(
                            context.session_id,
                            result_id,
                            segment_result['text'],
                            UpdateType.REPLACE_FINAL if segment_result.get('is_complete', False) else UpdateType.APPEND,
                            segment_result['confidence'],
                            segment_result.get('is_complete', False),
                            DisplayPriority.HIGH if segment_result.get('is_complete', False) else DisplayPriority.NORMAL
                        )
                        metrics.display_latency_ms += (time.time() - display_start) * 1000
                    
                    metrics.tracking_latency_ms += (time.time() - track_start) * 1000
            
            metrics.segmentation_latency_ms = (time.time() - seg_start) * 1000
            
            # 计算总延迟和效率
            metrics.total_latency_ms = (time.time() - start_time) * 1000
            # 防止除零错误
            if metrics.total_latency_ms > 0:
                metrics.processing_efficiency = len(context.audio_data) / metrics.total_latency_ms
            else:
                metrics.processing_efficiency = 0.0
                self.logger.warning(f"处理延迟为0,无法计算处理效率 [{context.session_id}]")
            
            # 更新性能统计
            self._update_performance_stats(context.session_id, metrics)
            
            # 触发指标回调
            self._trigger_metrics_callbacks(context.session_id, metrics)
            
        except Exception as e:
            self.logger.error(f"处理音频时出错: {e}")
            self._handle_error(context.session_id, e)
    
    def _on_tracking_result(self, session_id: str, result_id: str, text: str, 
                           confidence: float, is_final: bool):
        """处理追踪模块的结果回调"""
        # 触发结果回调
        for callback in self.result_callbacks:
            try:
                callback(session_id, text, confidence, is_final)
            except Exception as e:
                self.logger.error(f"结果回调执行出错: {e}")
    
    def _on_display_error(self, session_id: str, error: Exception):
        """处理显示模块的错误回调"""
        self.logger.error(f"显示模块错误 [{session_id}]: {error}")
        self._handle_error(session_id, error)
    
    def _on_chunk_quality_feedback(self, session_id: str, chunk_id: str, 
                                  quality_score: float, metrics: Dict):
        """处理分片质量反馈"""
        # 根据质量反馈调整策略
        if quality_score < 0.5:
            self.logger.warning(f"分片质量较低 [{session_id}:{chunk_id}]: {quality_score}")
            # 可以在这里实施自适应调整
    
    def _handle_error(self, session_id: str, error: Exception):
        """处理错误"""
        for callback in self.error_callbacks:
            try:
                callback(session_id, error)
            except Exception as e:
                self.logger.error(f"错误回调执行出错: {e}")
    
    def _update_performance_stats(self, session_id: str, metrics: OptimizationMetrics):
        """更新性能统计"""
        with self._lock:
            # 更新平均延迟
            current_avg = self.processing_stats['average_latency_ms']
            total_sessions = self.processing_stats['total_sessions']
            
            if total_sessions > 0:
                new_avg = (current_avg * (total_sessions - 1) + metrics.total_latency_ms) / total_sessions
                self.processing_stats['average_latency_ms'] = new_avg
            
            # 存储会话指标
            self.performance_metrics[session_id] = metrics
    
    def _trigger_metrics_callbacks(self, session_id: str, metrics: OptimizationMetrics):
        """触发性能指标回调"""
        for callback in self.metrics_callbacks:
            try:
                # 将session_id包含在metrics字典中传递给回调
                metrics_dict = {
                    'session_id': session_id,
                    'total_latency_ms': metrics.total_latency_ms,
                    'chunking_latency_ms': metrics.chunking_latency_ms,
                    'segmentation_latency_ms': metrics.segmentation_latency_ms,
                    'tracking_latency_ms': metrics.tracking_latency_ms,
                    'display_latency_ms': metrics.display_latency_ms,
                    'processing_efficiency': metrics.processing_efficiency,
                    'accuracy_score': getattr(metrics, 'accuracy_score', 0.0)
                }
                callback(metrics_dict)
            except Exception as e:
                self.logger.error(f"指标回调执行出错: {e}")
    
    def complete_session(self, session_id: str) -> bool:
        """完成处理会话"""
        try:
            # 完成各个模块的会话
            self.segmentation_module.complete_session(session_id)
            self.chunking_module.complete_session(session_id)
            self.tracking_module.complete_session(session_id)
            
            with self._lock:
                self.processing_stats['active_sessions'] -= 1
                if session_id in self.performance_metrics:
                    del self.performance_metrics[session_id]
            
            self.logger.info(f"会话完成: {session_id}")
            return True
            
        except Exception as e:
            self.logger.error(f"完成会话失败: {e}")
            self._handle_error(session_id, e)
            return False
    
    def get_session_results(self, session_id: str) -> List[Dict]:
        """获取会话的所有结果"""
        try:
            # 从追踪模块获取结果
            results = self.tracking_module.get_session_results(session_id)
            
            # 从显示模块获取显示信息
            display_segments = self.display_module.get_session_display(session_id)
            
            # 合并结果
            combined_results = []
            for result in results:
                result_dict = {
                    'result_id': result.result_id,
                    'text': result.text,
                    'confidence': result.confidence,
                    'is_final': result.is_final,
                    'timestamp': result.timestamp,
                    'result_type': result.result_type.value if hasattr(result.result_type, 'value') else str(result.result_type)
                }
                combined_results.append(result_dict)
            
            return combined_results
            
        except Exception as e:
            self.logger.error(f"获取会话结果失败: {e}")
            return []
    
    def get_performance_stats(self) -> Dict:
        """获取性能统计"""
        with self._lock:
            stats = self.processing_stats.copy()
            
            # 添加各模块的性能统计
            stats['segmentation_stats'] = self.segmentation_module.get_performance_stats()
            stats['chunking_stats'] = self.chunking_module.get_performance_stats()
            stats['tracking_stats'] = self.tracking_module.get_performance_stats()
            stats['display_stats'] = self.display_module.get_performance_stats()
            
            return stats
    
    def get_optimization_metrics(self, session_id: str = None) -> Dict:
        """获取优化指标"""
        if session_id:
            return self.performance_metrics.get(session_id, {})
        else:
            return self.performance_metrics.copy()
    
    def shutdown(self):
        """关闭优化管理器"""
        self._running = False
        
        # 关闭各个模块
        self.segmentation_module.shutdown()
        self.chunking_module.shutdown()
        self.tracking_module.shutdown()
        self.display_module.shutdown()
        
        # 关闭线程池
        self.executor.shutdown(wait=True)
        
        self.logger.info("流式语音识别优化管理器已关闭")