genavatar.py
5.27 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse
import json, subprocess, random, string
from tqdm import tqdm
from glob import glob
import torch
import pickle
import face_detection
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--img_size', default=96, type=int)
parser.add_argument('--avatar_id', default='wav2lip_avatar1', type=str)
parser.add_argument('--video_path', default='', type=str)
parser.add_argument('--nosmooth', default=False, action='store_true',
help='Prevent smoothing face detections over a short temporal window')
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--face_det_batch_size', type=int,
help='Batch size for face detection', default=16)
parser.add_argument('--gpu_id', type=int, default=0,
help='GPU device ID to use (default: 0)')
parser.add_argument('--image_style', type=str, default='auto',
choices=['auto', 'realistic', 'anime', 'ancient'],
help='Image style for face detection optimization (default: auto)')
parser.add_argument('--confidence_threshold', type=float, default=None,
help='Custom confidence threshold for face detection (overrides style defaults)')
args = parser.parse_args()
if torch.cuda.is_available():
device = f'cuda:{args.gpu_id}'
print(f'Using GPU {args.gpu_id} for inference.')
else:
device = 'cpu'
print('CUDA not available, using CPU for inference.')
def osmakedirs(path_list):
for path in path_list:
os.makedirs(path) if not os.path.exists(path) else None
def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000):
cap = cv2.VideoCapture(vid_path)
count = 0
while True:
if count > cut_frame:
break
ret, frame = cap.read()
if ret:
cv2.putText(frame, "Ewin", (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (128,128,128), 1)
cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
count += 1
else:
break
def read_imgs(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
# Convert style string to enum
style_map = {
'auto': face_detection.ImageStyle.AUTO,
'realistic': face_detection.ImageStyle.REALISTIC,
'anime': face_detection.ImageStyle.ANIME,
'ancient': face_detection.ImageStyle.ANCIENT
}
image_style = style_map.get(args.image_style, face_detection.ImageStyle.AUTO)
detector = face_detection.FaceAlignment(
face_detection.LandmarksType._2D,
flip_input=False,
device=device,
image_style=image_style,
confidence_threshold=args.confidence_threshold,
verbose=True
)
batch_size = args.face_det_batch_size
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
if __name__ == "__main__":
avatar_path = f"./results/avatars/{args.avatar_id}"
full_imgs_path = f"{avatar_path}/full_imgs"
face_imgs_path = f"{avatar_path}/face_imgs"
coords_path = f"{avatar_path}/coords.pkl"
osmakedirs([avatar_path,full_imgs_path,face_imgs_path])
print(args)
#if os.path.isfile(args.video_path):
video2imgs(args.video_path, full_imgs_path, ext = 'png')
input_img_list = sorted(glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
frames = read_imgs(input_img_list)
face_det_results = face_detect(frames)
coord_list = []
idx = 0
for frame,coords in face_det_results:
#x1, y1, x2, y2 = bbox
resized_crop_frame = cv2.resize(frame,(args.img_size, args.img_size)) #,interpolation = cv2.INTER_LANCZOS4)
cv2.imwrite(f"{face_imgs_path}/{idx:08d}.png", resized_crop_frame)
coord_list.append(coords)
idx = idx + 1
with open(coords_path, 'wb') as f:
pickle.dump(coord_list, f)